A new crossover dynamics mathematical model of monkeypox disease based on fractional differential equations and the Ψ-Caputo derivative: Numerical treatments

IF 6.2 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
N.H. Sweilam , S.M. Al-Mekhlafi , W.S. Abdel Kareem , G. Alqurishi
{"title":"A new crossover dynamics mathematical model of monkeypox disease based on fractional differential equations and the Ψ-Caputo derivative: Numerical treatments","authors":"N.H. Sweilam ,&nbsp;S.M. Al-Mekhlafi ,&nbsp;W.S. Abdel Kareem ,&nbsp;G. Alqurishi","doi":"10.1016/j.aej.2024.10.019","DOIUrl":null,"url":null,"abstract":"<div><div>A novel crossover model for monkeypox disease that incorporates <span><math><mi>Ψ</mi></math></span>-Caputo fractional derivatives is presented here, where we use a simple nonstandard kernel function <span><math><mrow><mi>Ψ</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span>. We can be obtained the Caputo and Caputo–Katugampola derivatives as special cases from the proposed derivative. The crossover dynamics model defines four alternative models: fractal fractional order, fractional order, variable order, and fractional stochastic derivatives driven by fractional Brownian motion over four time intervals. The <span><math><mi>Ψ</mi></math></span>-nonstandard finite difference method is designed to solve fractal fractional order, fractional order, and variable order mathematical models. Also, the nonstandard modified Euler Maruyama method is used to study the fractional stochastic model. A comparison between <span><math><mi>Ψ</mi></math></span>-nonstandard finite difference method and <span><math><mi>Ψ</mi></math></span>-standard finite difference method is presented. Moreover, numerous numerical tests and comparisons with real data were conducted to validate the methods’ efficacy and support the theoretical conclusions.</div></div>","PeriodicalId":7484,"journal":{"name":"alexandria engineering journal","volume":"111 ","pages":"Pages 181-193"},"PeriodicalIF":6.2000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"alexandria engineering journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1110016824011748","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A novel crossover model for monkeypox disease that incorporates Ψ-Caputo fractional derivatives is presented here, where we use a simple nonstandard kernel function Ψ(t). We can be obtained the Caputo and Caputo–Katugampola derivatives as special cases from the proposed derivative. The crossover dynamics model defines four alternative models: fractal fractional order, fractional order, variable order, and fractional stochastic derivatives driven by fractional Brownian motion over four time intervals. The Ψ-nonstandard finite difference method is designed to solve fractal fractional order, fractional order, and variable order mathematical models. Also, the nonstandard modified Euler Maruyama method is used to study the fractional stochastic model. A comparison between Ψ-nonstandard finite difference method and Ψ-standard finite difference method is presented. Moreover, numerous numerical tests and comparisons with real data were conducted to validate the methods’ efficacy and support the theoretical conclusions.
基于分式微分方程和Ψ-卡普托导数的猴痘病新交叉动力学数学模型:数值处理
本文提出了一种结合Ψ-卡普托分数导数的新型猴痘疾病交叉模型,其中我们使用了一个简单的非标准核函数Ψ(t)。我们可以从提出的导数中得到卡普托和卡普托-卡图甘波拉导数作为特例。交叉动力学模型定义了四种可选模型:分形分数阶、分数阶、变阶和由分数布朗运动驱动的分数随机导数在四个时间间隔内的变化。设计了Ψ-非标准有限差分法来求解分形分数阶、分数阶和变阶数学模型。此外,还使用了非标准修正欧拉丸山方法来研究分数随机模型。比较了Ψ-非标准有限差分法和Ψ-标准有限差分法。此外,还进行了大量数值测试和与实际数据的比较,以验证方法的有效性并支持理论结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
alexandria engineering journal
alexandria engineering journal Engineering-General Engineering
CiteScore
11.20
自引率
4.40%
发文量
1015
审稿时长
43 days
期刊介绍: Alexandria Engineering Journal is an international journal devoted to publishing high quality papers in the field of engineering and applied science. Alexandria Engineering Journal is cited in the Engineering Information Services (EIS) and the Chemical Abstracts (CA). The papers published in Alexandria Engineering Journal are grouped into five sections, according to the following classification: • Mechanical, Production, Marine and Textile Engineering • Electrical Engineering, Computer Science and Nuclear Engineering • Civil and Architecture Engineering • Chemical Engineering and Applied Sciences • Environmental Engineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信