{"title":"Bounded control of PMLSM servo system based on fractional order barrier function adaptive super-twisting approach","authors":"XinYu Zhao, LiMei Wang","doi":"10.1016/j.conengprac.2024.106131","DOIUrl":null,"url":null,"abstract":"<div><div>The performance of permanent magnet linear synchronous motor in tracking is influenced by payload uncertainty and unknown disturbances. Traditional constant-gain super-twisting control typically use a high control gain exceeding the total disturbances to maintain the stability of the system. However, these controllers may lead to control input oversaturation when disturbances decrease and the control gain is not appropriately chosen. To address this issue, this paper proposes a new Fractional Order Barrier Function Adaptive Super-Twisting (FOBFAST) control strategy. The advantages of FOBFAST include: (1) mitigation of system chattering through the design of the super-twisting algorithm and the fractional-order integral terminal sliding mode manifold; (2) achieving convergence of system error to a predetermined zero-neighborhood without requiring information about the disturbance upper bound; (3) dynamic adjustment of control gain to a smaller value as tracking error converges to the origin. Furthermore, an improved barrier function is proposed to address the issue of large control amplitudes, limiting the maximum allowable control gain and ensuring system stability. Experimental results demonstrate that the proposed control strategy not only enhances position tracking performance but also exhibits superior robustness.</div></div>","PeriodicalId":50615,"journal":{"name":"Control Engineering Practice","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Control Engineering Practice","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0967066124002909","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The performance of permanent magnet linear synchronous motor in tracking is influenced by payload uncertainty and unknown disturbances. Traditional constant-gain super-twisting control typically use a high control gain exceeding the total disturbances to maintain the stability of the system. However, these controllers may lead to control input oversaturation when disturbances decrease and the control gain is not appropriately chosen. To address this issue, this paper proposes a new Fractional Order Barrier Function Adaptive Super-Twisting (FOBFAST) control strategy. The advantages of FOBFAST include: (1) mitigation of system chattering through the design of the super-twisting algorithm and the fractional-order integral terminal sliding mode manifold; (2) achieving convergence of system error to a predetermined zero-neighborhood without requiring information about the disturbance upper bound; (3) dynamic adjustment of control gain to a smaller value as tracking error converges to the origin. Furthermore, an improved barrier function is proposed to address the issue of large control amplitudes, limiting the maximum allowable control gain and ensuring system stability. Experimental results demonstrate that the proposed control strategy not only enhances position tracking performance but also exhibits superior robustness.
期刊介绍:
Control Engineering Practice strives to meet the needs of industrial practitioners and industrially related academics and researchers. It publishes papers which illustrate the direct application of control theory and its supporting tools in all possible areas of automation. As a result, the journal only contains papers which can be considered to have made significant contributions to the application of advanced control techniques. It is normally expected that practical results should be included, but where simulation only studies are available, it is necessary to demonstrate that the simulation model is representative of a genuine application. Strictly theoretical papers will find a more appropriate home in Control Engineering Practice''s sister publication, Automatica. It is also expected that papers are innovative with respect to the state of the art and are sufficiently detailed for a reader to be able to duplicate the main results of the paper (supplementary material, including datasets, tables, code and any relevant interactive material can be made available and downloaded from the website). The benefits of the presented methods must be made very clear and the new techniques must be compared and contrasted with results obtained using existing methods. Moreover, a thorough analysis of failures that may happen in the design process and implementation can also be part of the paper.
The scope of Control Engineering Practice matches the activities of IFAC.
Papers demonstrating the contribution of automation and control in improving the performance, quality, productivity, sustainability, resource and energy efficiency, and the manageability of systems and processes for the benefit of mankind and are relevant to industrial practitioners are most welcome.