Corrective variational mode decomposition to detect multiple oscillations in process control systems

IF 5.4 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Songhua Liu , Xun Lang , Jiande Wu , Yufeng Zhang , Cong Lei , Hongye Su
{"title":"Corrective variational mode decomposition to detect multiple oscillations in process control systems","authors":"Songhua Liu ,&nbsp;Xun Lang ,&nbsp;Jiande Wu ,&nbsp;Yufeng Zhang ,&nbsp;Cong Lei ,&nbsp;Hongye Su","doi":"10.1016/j.conengprac.2024.106123","DOIUrl":null,"url":null,"abstract":"<div><div>Monitoring oscillatory behavior in industrial control systems is essential to ensure process safety and enhance productivity, but unfortunately, current decomposition-based monitoring methods struggle to extract and accurately detect multiple oscillations. This struggle is primarily due to the level of noise susceptibility in current monitoring methods and the intermittent nature of multiple oscillations in industrial control systems. As a potential solution, variational mode decomposition (VMD) shows promising advantages in processing non-stationary industrial signals with a significant amount of interference. Nevertheless, improperly configuring the number of modes in the VMD can lead to mode mixing and degrade the oscillation extraction accuracy. To overcome this challenge, we propose a corrective VMD approach that automatically adjusts the mode number to create a robust and automated framework for monitoring multiple oscillations. Our framework excels in detecting oscillatory behavior and quantifying the number of oscillations, even in the presence of noisy, intermittent, and irregular disturbances. To validate its effectiveness and practicality, we applied the framework to both a benchmark industrial dataset and a self-constructed industrial dataset, comparing its performance against state-of-the-art oscillation detection methods. The framework demonstrated superior accuracy, achieving 93.90% in detecting oscillations and 85.37% in quantifying the number of oscillations within the benchmark dataset, with similarly excellent results observed in the self-constructed industrial dataset.</div></div>","PeriodicalId":50615,"journal":{"name":"Control Engineering Practice","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Control Engineering Practice","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S096706612400282X","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Monitoring oscillatory behavior in industrial control systems is essential to ensure process safety and enhance productivity, but unfortunately, current decomposition-based monitoring methods struggle to extract and accurately detect multiple oscillations. This struggle is primarily due to the level of noise susceptibility in current monitoring methods and the intermittent nature of multiple oscillations in industrial control systems. As a potential solution, variational mode decomposition (VMD) shows promising advantages in processing non-stationary industrial signals with a significant amount of interference. Nevertheless, improperly configuring the number of modes in the VMD can lead to mode mixing and degrade the oscillation extraction accuracy. To overcome this challenge, we propose a corrective VMD approach that automatically adjusts the mode number to create a robust and automated framework for monitoring multiple oscillations. Our framework excels in detecting oscillatory behavior and quantifying the number of oscillations, even in the presence of noisy, intermittent, and irregular disturbances. To validate its effectiveness and practicality, we applied the framework to both a benchmark industrial dataset and a self-constructed industrial dataset, comparing its performance against state-of-the-art oscillation detection methods. The framework demonstrated superior accuracy, achieving 93.90% in detecting oscillations and 85.37% in quantifying the number of oscillations within the benchmark dataset, with similarly excellent results observed in the self-constructed industrial dataset.
纠正变分模式分解以检测过程控制系统中的多重振荡
监测工业控制系统中的振荡行为对于确保过程安全和提高生产率至关重要,但遗憾的是,目前基于分解的监测方法难以提取和准确检测多重振荡。造成这种困难的主要原因是目前的监测方法对噪声的敏感程度以及工业控制系统中多重振荡的间歇性。作为一种潜在的解决方案,变分模式分解(VMD)在处理具有大量干扰的非稳态工业信号方面显示出了很好的优势。然而,不适当地配置 VMD 中的模式数会导致模式混合,降低振荡提取的精度。为了克服这一难题,我们提出了一种自动调整模式数的纠正 VMD 方法,以创建一个用于监测多重振荡的稳健而自动化的框架。我们的框架在检测振荡行为和量化振荡数量方面表现出色,即使在存在噪声、间歇性和不规则干扰的情况下也是如此。为了验证其有效性和实用性,我们将该框架应用于基准工业数据集和自建工业数据集,并将其性能与最先进的振荡检测方法进行了比较。该框架表现出了极高的准确性,在基准数据集中的振荡检测率达到了 93.90%,在量化振荡数量方面达到了 85.37%,在自建工业数据集中也取得了类似的优异成绩。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Control Engineering Practice
Control Engineering Practice 工程技术-工程:电子与电气
CiteScore
9.20
自引率
12.20%
发文量
183
审稿时长
44 days
期刊介绍: Control Engineering Practice strives to meet the needs of industrial practitioners and industrially related academics and researchers. It publishes papers which illustrate the direct application of control theory and its supporting tools in all possible areas of automation. As a result, the journal only contains papers which can be considered to have made significant contributions to the application of advanced control techniques. It is normally expected that practical results should be included, but where simulation only studies are available, it is necessary to demonstrate that the simulation model is representative of a genuine application. Strictly theoretical papers will find a more appropriate home in Control Engineering Practice''s sister publication, Automatica. It is also expected that papers are innovative with respect to the state of the art and are sufficiently detailed for a reader to be able to duplicate the main results of the paper (supplementary material, including datasets, tables, code and any relevant interactive material can be made available and downloaded from the website). The benefits of the presented methods must be made very clear and the new techniques must be compared and contrasted with results obtained using existing methods. Moreover, a thorough analysis of failures that may happen in the design process and implementation can also be part of the paper. The scope of Control Engineering Practice matches the activities of IFAC. Papers demonstrating the contribution of automation and control in improving the performance, quality, productivity, sustainability, resource and energy efficiency, and the manageability of systems and processes for the benefit of mankind and are relevant to industrial practitioners are most welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信