Design and experimental validation of eco-driving system for connected and automated electric vehicles

IF 5.4 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Xi Luo , Yifan Cheng , Jinlong Hong , Shiying Dong , Xiaoxiang Na , Bingzhao Gao , Hong Chen
{"title":"Design and experimental validation of eco-driving system for connected and automated electric vehicles","authors":"Xi Luo ,&nbsp;Yifan Cheng ,&nbsp;Jinlong Hong ,&nbsp;Shiying Dong ,&nbsp;Xiaoxiang Na ,&nbsp;Bingzhao Gao ,&nbsp;Hong Chen","doi":"10.1016/j.conengprac.2024.106132","DOIUrl":null,"url":null,"abstract":"<div><div>To address range anxiety in electric vehicles (EVs), this paper presents an eco-driving add-on system implemented on a production EV, with comparative field experiments conducted in real-world traffic conditions. The proposed eco-driving system integrates a predictive cruise control (PCC) strategy to effectively utilize connected information, such as road geometry and preceding vehicle behaviors. For real-time implementation, a fast PCC algorithm coupled with the bisection method, warm-start, and improved iterative transversality condition is introduced. Numerical simulations validate the effectiveness of the proposed scheme, achieving an energy-saving effect of approximately 2%. Subsequently, field experiments were conducted in scenarios including smooth-flowing highways and congested urban expressways using a production EV. Compared to the baseline, which consists of the existing cruise control strategy of EVs and the experienced human drivers, our proposed scheme achieves energy savings of approximately 2.2% on highways and 2.6% on urban expressways.</div></div>","PeriodicalId":50615,"journal":{"name":"Control Engineering Practice","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Control Engineering Practice","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0967066124002910","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

To address range anxiety in electric vehicles (EVs), this paper presents an eco-driving add-on system implemented on a production EV, with comparative field experiments conducted in real-world traffic conditions. The proposed eco-driving system integrates a predictive cruise control (PCC) strategy to effectively utilize connected information, such as road geometry and preceding vehicle behaviors. For real-time implementation, a fast PCC algorithm coupled with the bisection method, warm-start, and improved iterative transversality condition is introduced. Numerical simulations validate the effectiveness of the proposed scheme, achieving an energy-saving effect of approximately 2%. Subsequently, field experiments were conducted in scenarios including smooth-flowing highways and congested urban expressways using a production EV. Compared to the baseline, which consists of the existing cruise control strategy of EVs and the experienced human drivers, our proposed scheme achieves energy savings of approximately 2.2% on highways and 2.6% on urban expressways.
互联和自动驾驶电动汽车生态驾驶系统的设计与实验验证
为解决电动汽车(EV)的续航焦虑问题,本文介绍了一种在量产电动汽车上实施的生态驾驶附加系统,并在实际交通条件下进行了现场对比实验。拟议的生态驾驶系统集成了预测巡航控制(PCC)策略,可有效利用道路几何形状和前车行为等相关信息。为实现实时性,引入了一种快速 PCC 算法,该算法结合了分段法、热启动和改进的迭代横向条件。数值模拟验证了所提方案的有效性,实现了约 2% 的节能效果。随后,使用量产电动汽车在畅通的高速公路和拥堵的城市快速路等场景中进行了实地实验。与基线(包括现有的电动汽车巡航控制策略和经验丰富的人类驾驶员)相比,我们提出的方案在高速公路上实现了约 2.2% 的节能效果,在城市快速路上实现了 2.6% 的节能效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Control Engineering Practice
Control Engineering Practice 工程技术-工程:电子与电气
CiteScore
9.20
自引率
12.20%
发文量
183
审稿时长
44 days
期刊介绍: Control Engineering Practice strives to meet the needs of industrial practitioners and industrially related academics and researchers. It publishes papers which illustrate the direct application of control theory and its supporting tools in all possible areas of automation. As a result, the journal only contains papers which can be considered to have made significant contributions to the application of advanced control techniques. It is normally expected that practical results should be included, but where simulation only studies are available, it is necessary to demonstrate that the simulation model is representative of a genuine application. Strictly theoretical papers will find a more appropriate home in Control Engineering Practice''s sister publication, Automatica. It is also expected that papers are innovative with respect to the state of the art and are sufficiently detailed for a reader to be able to duplicate the main results of the paper (supplementary material, including datasets, tables, code and any relevant interactive material can be made available and downloaded from the website). The benefits of the presented methods must be made very clear and the new techniques must be compared and contrasted with results obtained using existing methods. Moreover, a thorough analysis of failures that may happen in the design process and implementation can also be part of the paper. The scope of Control Engineering Practice matches the activities of IFAC. Papers demonstrating the contribution of automation and control in improving the performance, quality, productivity, sustainability, resource and energy efficiency, and the manageability of systems and processes for the benefit of mankind and are relevant to industrial practitioners are most welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信