Adaptive synchronous tracking control for n-PPPS redundantly actuated distributed parallel manipulators with dynamic uncertainties

IF 5.4 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Sen Liang , Bing Han , Xinfeng Wang , Xinfang Zhou , Qiang Fang , Yanding Wei
{"title":"Adaptive synchronous tracking control for n-PPPS redundantly actuated distributed parallel manipulators with dynamic uncertainties","authors":"Sen Liang ,&nbsp;Bing Han ,&nbsp;Xinfeng Wang ,&nbsp;Xinfang Zhou ,&nbsp;Qiang Fang ,&nbsp;Yanding Wei","doi":"10.1016/j.conengprac.2024.106135","DOIUrl":null,"url":null,"abstract":"<div><div>Redundantly actuated distributed parallel manipulators (RADPMs) are widely used for posture alignment and assembly of large-scale components. The structural characteristics of multiple redundant actuation chains not only possess potential advantages, but also bring about challenges for multi-joint coordinated motion. To address the synchronization control issue of the system with dynamic uncertainties, a novel adaptive synchronous tracking control (ASTC) scheme is proposed to realize high-precision trajectory tracking and coordination performance simultaneously. In the proposed ASTC scheme, a synchronization error is first introduced to depict the coordination relationship between adjacent joints and coupled with the tracking error to form a composite error in the joint space. Based on the defined errors, a dual-space adaptation law is proposed through the linear parameterized expression of the system dynamic model to obtain feedforward compensation for dynamics. Additionally, in order to restrain the influence of inevitable external disturbances, a robust control compensation term is introduced to improve the disturbance rejection ability. Moreover, the stability of the entire closed-loop system is proved by utilizing the Lyapunov theory. Finally, simulation and experiments are conducted on an actual 4-PPPS RADPM, and the comparative results demonstrate that the proposed scheme can effectively improve the tracking accuracy and synchronization performance of the system.</div></div>","PeriodicalId":50615,"journal":{"name":"Control Engineering Practice","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Control Engineering Practice","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0967066124002946","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Redundantly actuated distributed parallel manipulators (RADPMs) are widely used for posture alignment and assembly of large-scale components. The structural characteristics of multiple redundant actuation chains not only possess potential advantages, but also bring about challenges for multi-joint coordinated motion. To address the synchronization control issue of the system with dynamic uncertainties, a novel adaptive synchronous tracking control (ASTC) scheme is proposed to realize high-precision trajectory tracking and coordination performance simultaneously. In the proposed ASTC scheme, a synchronization error is first introduced to depict the coordination relationship between adjacent joints and coupled with the tracking error to form a composite error in the joint space. Based on the defined errors, a dual-space adaptation law is proposed through the linear parameterized expression of the system dynamic model to obtain feedforward compensation for dynamics. Additionally, in order to restrain the influence of inevitable external disturbances, a robust control compensation term is introduced to improve the disturbance rejection ability. Moreover, the stability of the entire closed-loop system is proved by utilizing the Lyapunov theory. Finally, simulation and experiments are conducted on an actual 4-PPPS RADPM, and the comparative results demonstrate that the proposed scheme can effectively improve the tracking accuracy and synchronization performance of the system.
具有动态不确定性的 n-PPPS 冗余致动分布式并联机械手的自适应同步跟踪控制
冗余致动分布式并联机械手(RADPM)被广泛用于大型部件的姿势校准和装配。多冗余执行链的结构特点不仅具有潜在优势,同时也为多关节协调运动带来了挑战。针对具有动态不确定性的系统的同步控制问题,提出了一种新型自适应同步跟踪控制(ASTC)方案,以同时实现高精度轨迹跟踪和协调性能。在所提出的 ASTC 方案中,首先引入同步误差来描述相邻关节之间的协调关系,并与跟踪误差耦合形成关节空间中的复合误差。根据定义的误差,通过系统动态模型的线性参数化表达,提出了双空间适应法则,从而获得动态的前馈补偿。此外,为了抑制不可避免的外部干扰的影响,还引入了鲁棒控制补偿项,以提高干扰抑制能力。此外,利用 Lyapunov 理论证明了整个闭环系统的稳定性。最后,在实际的 4-PPPS RADPM 上进行了仿真和实验,对比结果表明所提出的方案能有效提高系统的跟踪精度和同步性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Control Engineering Practice
Control Engineering Practice 工程技术-工程:电子与电气
CiteScore
9.20
自引率
12.20%
发文量
183
审稿时长
44 days
期刊介绍: Control Engineering Practice strives to meet the needs of industrial practitioners and industrially related academics and researchers. It publishes papers which illustrate the direct application of control theory and its supporting tools in all possible areas of automation. As a result, the journal only contains papers which can be considered to have made significant contributions to the application of advanced control techniques. It is normally expected that practical results should be included, but where simulation only studies are available, it is necessary to demonstrate that the simulation model is representative of a genuine application. Strictly theoretical papers will find a more appropriate home in Control Engineering Practice''s sister publication, Automatica. It is also expected that papers are innovative with respect to the state of the art and are sufficiently detailed for a reader to be able to duplicate the main results of the paper (supplementary material, including datasets, tables, code and any relevant interactive material can be made available and downloaded from the website). The benefits of the presented methods must be made very clear and the new techniques must be compared and contrasted with results obtained using existing methods. Moreover, a thorough analysis of failures that may happen in the design process and implementation can also be part of the paper. The scope of Control Engineering Practice matches the activities of IFAC. Papers demonstrating the contribution of automation and control in improving the performance, quality, productivity, sustainability, resource and energy efficiency, and the manageability of systems and processes for the benefit of mankind and are relevant to industrial practitioners are most welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信