TANG Bowen, ZHANG Rui, LIU Haiyun, JIN Lijun, HU Haoquan
{"title":"Direct liquefaction behavior of Shenhua Shangwan coal under CO containing atmosphere","authors":"TANG Bowen, ZHANG Rui, LIU Haiyun, JIN Lijun, HU Haoquan","doi":"10.1016/S1872-5813(24)60451-2","DOIUrl":null,"url":null,"abstract":"<div><div>Direct coal liquefaction (DCL) under CO or syngas atmosphere is beneficial to reduce the cost of hydrogen production. Effects of CO on liquefaction process of Shangwan coal were investigated by comparing the liquefaction behavior in three atmospheres of CO, H<sub>2,</sub> and N<sub>2</sub>. Then, effects of different CO/H<sub>2</sub> ratios and catalysts on the liquefaction process in syngas were investigated. The results indicated that the oil yield under CO atmosphere reached 43.1%, which was 4.2% lower than that under H<sub>2</sub>, but 10.2% higher than that under N<sub>2</sub>. The liquefaction performance was further improved by adding the Shenhua 863 catalyst. It is analyzed that CO promoted liquefaction in two ways: water-gas shift reaction and the reaction between CO and organic structures of coal. Through characterization of the products by GC-MS and FT-IR, it was found that CO makes benzenes, aliphatics, and oxygen-containing compounds in liquefied oil simultaneously increased. The effect on functional groups and free radicals concentration in the solid products was not obvious. The experimental results under syngas showed that the highest oil yield, 57.4%, can be obtained in DCL with 20% CO syngas, and further improved by increasing moisture content of coal appropriately. In addition, the Shenhua 863 catalyst had a good catalytic effect on the liquefaction process and also water-gas shift reaction.</div></div>","PeriodicalId":15956,"journal":{"name":"燃料化学学报","volume":"52 10","pages":"Pages 1375-1386"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"燃料化学学报","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872581324604512","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0
Abstract
Direct coal liquefaction (DCL) under CO or syngas atmosphere is beneficial to reduce the cost of hydrogen production. Effects of CO on liquefaction process of Shangwan coal were investigated by comparing the liquefaction behavior in three atmospheres of CO, H2, and N2. Then, effects of different CO/H2 ratios and catalysts on the liquefaction process in syngas were investigated. The results indicated that the oil yield under CO atmosphere reached 43.1%, which was 4.2% lower than that under H2, but 10.2% higher than that under N2. The liquefaction performance was further improved by adding the Shenhua 863 catalyst. It is analyzed that CO promoted liquefaction in two ways: water-gas shift reaction and the reaction between CO and organic structures of coal. Through characterization of the products by GC-MS and FT-IR, it was found that CO makes benzenes, aliphatics, and oxygen-containing compounds in liquefied oil simultaneously increased. The effect on functional groups and free radicals concentration in the solid products was not obvious. The experimental results under syngas showed that the highest oil yield, 57.4%, can be obtained in DCL with 20% CO syngas, and further improved by increasing moisture content of coal appropriately. In addition, the Shenhua 863 catalyst had a good catalytic effect on the liquefaction process and also water-gas shift reaction.
期刊介绍:
Journal of Fuel Chemistry and Technology (Ranliao Huaxue Xuebao) is a Chinese Academy of Sciences(CAS) journal started in 1956, sponsored by the Chinese Chemical Society and the Institute of Coal Chemistry, Chinese Academy of Sciences(CAS). The journal is published bimonthly by Science Press in China and widely distributed in about 20 countries. Journal of Fuel Chemistry and Technology publishes reports of both basic and applied research in the chemistry and chemical engineering of many energy sources, including that involved in the nature, processing and utilization of coal, petroleum, oil shale, natural gas, biomass and synfuels, as well as related subjects of increasing interest such as C1 chemistry, pollutions control and new catalytic materials. Types of publications include original research articles, short communications, research notes and reviews. Both domestic and international contributors are welcome. Manuscripts written in Chinese or English will be accepted. Additional English titles, abstracts and key words should be included in Chinese manuscripts. All manuscripts are subject to critical review by the editorial committee, which is composed of about 10 foreign and 50 Chinese experts in fuel science. Journal of Fuel Chemistry and Technology has been a source of primary research work in fuel chemistry as a Chinese core scientific periodical.