A bifurcation and multiplicity result for a critical growth elliptic problem

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Said El Manouni , Kanishka Perera
{"title":"A bifurcation and multiplicity result for a critical growth elliptic problem","authors":"Said El Manouni ,&nbsp;Kanishka Perera","doi":"10.1016/j.aml.2024.109342","DOIUrl":null,"url":null,"abstract":"<div><div>We consider a Brézis–Nirenberg type critical growth <span><math><mi>p</mi></math></span>-Laplacian problem involving a parameter <span><math><mrow><mi>μ</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span> in a smooth bounded domain <span><math><mi>Ω</mi></math></span>. We prove the existence of multiple nontrivial solutions if either <span><math><mi>μ</mi></math></span> or the volume of <span><math><mi>Ω</mi></math></span> is sufficiently small. The proof is based on an abstract critical point theorem that only assumes a local <span><math><msub><mrow><mrow><mo>(</mo><mtext>PS</mtext><mo>)</mo></mrow></mrow><mrow></mrow></msub></math></span> condition. Our results are new even in the semilinear case <span><math><mrow><mi>p</mi><mo>=</mo><mn>2</mn></mrow></math></span>.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"160 ","pages":"Article 109342"},"PeriodicalIF":2.9000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893965924003628","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We consider a Brézis–Nirenberg type critical growth p-Laplacian problem involving a parameter μ>0 in a smooth bounded domain Ω. We prove the existence of multiple nontrivial solutions if either μ or the volume of Ω is sufficiently small. The proof is based on an abstract critical point theorem that only assumes a local (PS) condition. Our results are new even in the semilinear case p=2.
临界增长椭圆问题的分岔和多重性结果
我们考虑了一个在光滑有界域 Ω 中涉及参数 μ>0 的 Brézis-Nirenberg 型临界增长 p-Laplacian 问题。 我们证明,如果 μ 或 Ω 的体积足够小,则存在多个非小解。证明基于抽象临界点定理,只假定了局部(PS)条件。即使在 p=2 的半线性方程中,我们的结果也是新的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Mathematics Letters
Applied Mathematics Letters 数学-应用数学
CiteScore
7.70
自引率
5.40%
发文量
347
审稿时长
10 days
期刊介绍: The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信