Mass concentration near the boundary for attractive Bose–Einstein condensates in bounded domains

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Chen Yang, Chun-Lei Tang
{"title":"Mass concentration near the boundary for attractive Bose–Einstein condensates in bounded domains","authors":"Chen Yang,&nbsp;Chun-Lei Tang","doi":"10.1016/j.aml.2024.109338","DOIUrl":null,"url":null,"abstract":"<div><div>We are devoted to studying the ground states of trapped attractive Bose–Einstein condensates in a bounded domain <span><math><mrow><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span>, which can be described by minimizers of <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-critical constraint Gross–Pitaevskii energy functional. It has been shown that there is a threshold <span><math><mrow><msup><mrow><mi>a</mi></mrow><mrow><mo>∗</mo></mrow></msup><mo>&gt;</mo><mn>0</mn></mrow></math></span> such that minimizers exist if and only if the interaction strength <span><math><mi>a</mi></math></span> satisfies <span><math><mrow><mi>a</mi><mo>&lt;</mo><msup><mrow><mi>a</mi></mrow><mrow><mo>∗</mo></mrow></msup></mrow></math></span>. In present paper, we prove that when the trapping potential <span><math><mrow><mi>V</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> attains its flattest global minimum only at the boundary of <span><math><mi>Ω</mi></math></span>, the mass of minimizers must concentrate near the boundary of <span><math><mi>Ω</mi></math></span> as <span><math><mrow><mi>a</mi><mo>↗</mo><msup><mrow><mi>a</mi></mrow><mrow><mo>∗</mo></mrow></msup></mrow></math></span>. This result extends the work of Luo and Zhu (2019).</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893965924003586","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We are devoted to studying the ground states of trapped attractive Bose–Einstein condensates in a bounded domain ΩR2, which can be described by minimizers of L2-critical constraint Gross–Pitaevskii energy functional. It has been shown that there is a threshold a>0 such that minimizers exist if and only if the interaction strength a satisfies a<a. In present paper, we prove that when the trapping potential V(x) attains its flattest global minimum only at the boundary of Ω, the mass of minimizers must concentrate near the boundary of Ω as aa. This result extends the work of Luo and Zhu (2019).
有界域中有吸引力的玻色-爱因斯坦凝聚体边界附近的质量浓度
我们致力于研究有界域Ω⊂R2中诱捕的有吸引力玻色-爱因斯坦凝聚态的基态,这些基态可以用L2临界约束格罗斯-皮塔耶夫斯基能量函数的最小值来描述。已有研究表明,存在一个阈值 a∗>0,当且仅当相互作用强度 a 满足 a<a∗ 时,才存在最小化子。在本文中,我们证明了当捕获势 V(x) 仅在Ω 的边界处达到其最平坦的全局最小值时,最小值的质量必须集中在Ω 的边界附近,因为 aa∗ 。这一结果扩展了罗和朱(2019)的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Mathematics Letters
Applied Mathematics Letters 数学-应用数学
CiteScore
7.70
自引率
5.40%
发文量
347
审稿时长
10 days
期刊介绍: The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信