{"title":"A comparative analysis of cross-sectional study and natural experiment in rail transit-travel behavior research: A case study in Wuhan, China","authors":"Jingjing Wang , Yi Lu , Mi Diao , Ye Liu","doi":"10.1016/j.jtrangeo.2024.104035","DOIUrl":null,"url":null,"abstract":"<div><div>There has been a global increase in investment in rail transit, driven by its potential to enhance transportation efficiency, reduce air pollution, and stimulate economic growth. Both cross-sectional studies and natural experiments have contributed to the growing body of evidence supporting these claims. While natural experiments are commonly preferred for evaluating the impact of rail transit, cross-sectional studies remain popular due to their ease of data collection. However, there is a scarcity of studies that compare these two approaches using the same dataset to assess the robustness of cross-sectional studies. Using a two-wave panel dataset from Wuhan, China, this study used both cross-sectional and natural experimental analyses to examine the relationship between urban rail transit and travel behavior. The study attempted to enhance the credibility of the cross-sectional analysis by controlling for confounding variables and by combining it with the propensity score matching (PSM) method, respectively. The results revealed that the cross-sectional analyses could produce similar results, when setting a more stringent significance level. The findings suggested that well-designed cross-sectional studies can be reliable and represent a cost-effective alternative to resource-intensive natural experiments.</div></div>","PeriodicalId":48413,"journal":{"name":"Journal of Transport Geography","volume":"121 ","pages":"Article 104035"},"PeriodicalIF":5.7000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Transport Geography","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0966692324002448","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
There has been a global increase in investment in rail transit, driven by its potential to enhance transportation efficiency, reduce air pollution, and stimulate economic growth. Both cross-sectional studies and natural experiments have contributed to the growing body of evidence supporting these claims. While natural experiments are commonly preferred for evaluating the impact of rail transit, cross-sectional studies remain popular due to their ease of data collection. However, there is a scarcity of studies that compare these two approaches using the same dataset to assess the robustness of cross-sectional studies. Using a two-wave panel dataset from Wuhan, China, this study used both cross-sectional and natural experimental analyses to examine the relationship between urban rail transit and travel behavior. The study attempted to enhance the credibility of the cross-sectional analysis by controlling for confounding variables and by combining it with the propensity score matching (PSM) method, respectively. The results revealed that the cross-sectional analyses could produce similar results, when setting a more stringent significance level. The findings suggested that well-designed cross-sectional studies can be reliable and represent a cost-effective alternative to resource-intensive natural experiments.
期刊介绍:
A major resurgence has occurred in transport geography in the wake of political and policy changes, huge transport infrastructure projects and responses to urban traffic congestion. The Journal of Transport Geography provides a central focus for developments in this rapidly expanding sub-discipline.