{"title":"Optical and dielectric properties of water-bearing sandstones in the terahertz range","authors":"ChuTong Gao , ZhiYuan Zheng , Lixian Hao , Tong Zhang , MingRui Zhang , Qiming Qiu , Shanshan Li , Xiaodi Zheng , HaoChong Huang , Kunfeng Qiu","doi":"10.1016/j.infrared.2024.105610","DOIUrl":null,"url":null,"abstract":"<div><div>Water content significantly impacts the physical properties of sandstone. Studying the properties of water-bearing sandstone helps understand its behavior in seismic wave propagation, groundwater flow, and hydrocarbon reservoirs. This paper investigates the optical and dielectric properties of water-bearing quartz sandstone and arkose using terahertz time-domain spectroscopy (THz-TDS). The intrinsic dielectric permittivities were extracted using effective medium theory and fitted with the Debye model. Results show that increasing water content extends the slow relaxation time from 2.746 ps to 3.791 ps and the fast relaxation time from 0.032 ps to 0.282 ps. Compared to quartz sandstone, arkose shows a slower increase in dielectric permittivity due to restricted water molecule movement caused by its higher ion content, with the analysis focusing on the frequency dependence of the polarizability of the internal components.</div></div>","PeriodicalId":13549,"journal":{"name":"Infrared Physics & Technology","volume":"143 ","pages":"Article 105610"},"PeriodicalIF":3.1000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infrared Physics & Technology","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350449524004948","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
Water content significantly impacts the physical properties of sandstone. Studying the properties of water-bearing sandstone helps understand its behavior in seismic wave propagation, groundwater flow, and hydrocarbon reservoirs. This paper investigates the optical and dielectric properties of water-bearing quartz sandstone and arkose using terahertz time-domain spectroscopy (THz-TDS). The intrinsic dielectric permittivities were extracted using effective medium theory and fitted with the Debye model. Results show that increasing water content extends the slow relaxation time from 2.746 ps to 3.791 ps and the fast relaxation time from 0.032 ps to 0.282 ps. Compared to quartz sandstone, arkose shows a slower increase in dielectric permittivity due to restricted water molecule movement caused by its higher ion content, with the analysis focusing on the frequency dependence of the polarizability of the internal components.
期刊介绍:
The Journal covers the entire field of infrared physics and technology: theory, experiment, application, devices and instrumentation. Infrared'' is defined as covering the near, mid and far infrared (terahertz) regions from 0.75um (750nm) to 1mm (300GHz.) Submissions in the 300GHz to 100GHz region may be accepted at the editors discretion if their content is relevant to shorter wavelengths. Submissions must be primarily concerned with and directly relevant to this spectral region.
Its core topics can be summarized as the generation, propagation and detection, of infrared radiation; the associated optics, materials and devices; and its use in all fields of science, industry, engineering and medicine.
Infrared techniques occur in many different fields, notably spectroscopy and interferometry; material characterization and processing; atmospheric physics, astronomy and space research. Scientific aspects include lasers, quantum optics, quantum electronics, image processing and semiconductor physics. Some important applications are medical diagnostics and treatment, industrial inspection and environmental monitoring.