{"title":"Learning infrared degradations for coherent visible image fusion in the undecimated dual-tree complex wavelet domain","authors":"","doi":"10.1016/j.infrared.2024.105596","DOIUrl":null,"url":null,"abstract":"<div><div>Traditional infrared (IR) and visible (VIS) image fusion methods demand identical resolution levels for source images, which can be problematic due to the inherent low-resolution nature of IR imagery. In this paper, we introduce an innovative image fusion approach that harmonizes resolution across IR-VIS source images, leading to the generation of fused images with higher resolution. We employ a convolutional neural network model to recover the real-time image degradations in IR data, with a particular focus on super-resolution through the multi degradation resolution enhancement network (MDREN). We adopt undecimated dual-tree complex wavelet transform (UDT-CWT) in our fusion process due to its near shift invariance and better directionality capabilities. This results in coherent information of the fused images with minimized noise and loss. Experiments employing five image quality assessment measures are used to compare the proposed method to nine state-of-the-art approaches and show its efficacy.</div></div>","PeriodicalId":13549,"journal":{"name":"Infrared Physics & Technology","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infrared Physics & Technology","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350449524004808","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
Traditional infrared (IR) and visible (VIS) image fusion methods demand identical resolution levels for source images, which can be problematic due to the inherent low-resolution nature of IR imagery. In this paper, we introduce an innovative image fusion approach that harmonizes resolution across IR-VIS source images, leading to the generation of fused images with higher resolution. We employ a convolutional neural network model to recover the real-time image degradations in IR data, with a particular focus on super-resolution through the multi degradation resolution enhancement network (MDREN). We adopt undecimated dual-tree complex wavelet transform (UDT-CWT) in our fusion process due to its near shift invariance and better directionality capabilities. This results in coherent information of the fused images with minimized noise and loss. Experiments employing five image quality assessment measures are used to compare the proposed method to nine state-of-the-art approaches and show its efficacy.
期刊介绍:
The Journal covers the entire field of infrared physics and technology: theory, experiment, application, devices and instrumentation. Infrared'' is defined as covering the near, mid and far infrared (terahertz) regions from 0.75um (750nm) to 1mm (300GHz.) Submissions in the 300GHz to 100GHz region may be accepted at the editors discretion if their content is relevant to shorter wavelengths. Submissions must be primarily concerned with and directly relevant to this spectral region.
Its core topics can be summarized as the generation, propagation and detection, of infrared radiation; the associated optics, materials and devices; and its use in all fields of science, industry, engineering and medicine.
Infrared techniques occur in many different fields, notably spectroscopy and interferometry; material characterization and processing; atmospheric physics, astronomy and space research. Scientific aspects include lasers, quantum optics, quantum electronics, image processing and semiconductor physics. Some important applications are medical diagnostics and treatment, industrial inspection and environmental monitoring.