Hazlam Shamin Ahmad Shaberi , Hamidun Bunawan , Sean Craig , Samantha J. Bryan , Ahmad Bazli Ramzi
{"title":"Advancing plastics bio-upcycling with photosynthetic microorganisms using bioengineering and bioconversion strategies","authors":"Hazlam Shamin Ahmad Shaberi , Hamidun Bunawan , Sean Craig , Samantha J. Bryan , Ahmad Bazli Ramzi","doi":"10.1016/j.algal.2024.103755","DOIUrl":null,"url":null,"abstract":"<div><div>Biotechnological interventions have been increasingly adopted for addressing the persistence and recalcitrance of fossil fuel-derived plastic waste. Bioremediation through microbial and enzymatic degradation offers promising solutions, yet economic and scalability challenges persist, especially for addressing plastic waste accumulation in aquatic ecosystems. Despite recent advancements in plastic bioconversion and bio-upcycling using recombinant enzymes and microbes, current genetic and biological engineering platforms mainly employed heterotrophic chassis such as <em>Escherichia coli</em> and <em>Pseudomonas putida</em>, that are not suitable for direct cultivation using wastewater sources. Photosynthetic microorganisms like cyanobacteria and microalgae offer a sustainable alternative to the heterotrophic counterparts, in not only converting wastewater and CO<sub>2</sub> as carbon and energy sources but also bring about carbon-neutral bioconversion potentials. Therefore, this review explores bioengineering strategies required to develop and harness the capabilities of cyanobacteria and microalgae for plastic biomineralisation. Pathway engineering in selected chassis is highlighted by detailing the metabolic pathways involved in plastic degradation where the application of growth-coupled genome editing and advanced biotechnological tools is further discussed. By integrating biofoundry-driven bioengineering strategies with growth-coupled selection, microalgal strain development can be accelerated towards achieving high substrate-to-product yields thus promoting carbon-neutral biorefinery and plastic bioconversion approaches.</div></div>","PeriodicalId":7855,"journal":{"name":"Algal Research-Biomass Biofuels and Bioproducts","volume":"84 ","pages":"Article 103755"},"PeriodicalIF":4.6000,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algal Research-Biomass Biofuels and Bioproducts","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211926424003679","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Biotechnological interventions have been increasingly adopted for addressing the persistence and recalcitrance of fossil fuel-derived plastic waste. Bioremediation through microbial and enzymatic degradation offers promising solutions, yet economic and scalability challenges persist, especially for addressing plastic waste accumulation in aquatic ecosystems. Despite recent advancements in plastic bioconversion and bio-upcycling using recombinant enzymes and microbes, current genetic and biological engineering platforms mainly employed heterotrophic chassis such as Escherichia coli and Pseudomonas putida, that are not suitable for direct cultivation using wastewater sources. Photosynthetic microorganisms like cyanobacteria and microalgae offer a sustainable alternative to the heterotrophic counterparts, in not only converting wastewater and CO2 as carbon and energy sources but also bring about carbon-neutral bioconversion potentials. Therefore, this review explores bioengineering strategies required to develop and harness the capabilities of cyanobacteria and microalgae for plastic biomineralisation. Pathway engineering in selected chassis is highlighted by detailing the metabolic pathways involved in plastic degradation where the application of growth-coupled genome editing and advanced biotechnological tools is further discussed. By integrating biofoundry-driven bioengineering strategies with growth-coupled selection, microalgal strain development can be accelerated towards achieving high substrate-to-product yields thus promoting carbon-neutral biorefinery and plastic bioconversion approaches.
期刊介绍:
Algal Research is an international phycology journal covering all areas of emerging technologies in algae biology, biomass production, cultivation, harvesting, extraction, bioproducts, biorefinery, engineering, and econometrics. Algae is defined to include cyanobacteria, microalgae, and protists and symbionts of interest in biotechnology. The journal publishes original research and reviews for the following scope: algal biology, including but not exclusive to: phylogeny, biodiversity, molecular traits, metabolic regulation, and genetic engineering, algal cultivation, e.g. phototrophic systems, heterotrophic systems, and mixotrophic systems, algal harvesting and extraction systems, biotechnology to convert algal biomass and components into biofuels and bioproducts, e.g., nutraceuticals, pharmaceuticals, animal feed, plastics, etc. algal products and their economic assessment