{"title":"Warm growing season activates microbial nutrient cycling to promote fertilizer nitrogen uptake by maize","authors":"","doi":"10.1016/j.micres.2024.127936","DOIUrl":null,"url":null,"abstract":"<div><div>The influence of nitrogen (N) inputs on soil microbial communities and N uptake by plants is well-documented. Seasonal variations further impact these microbial communities and their nutrient-cycling functions, particularly within multiple cropping systems. Nevertheless, the combined effects of N fertilization and growing seasons on soil microbial communities and plant N uptake remain ambiguous, thereby constraining our comprehension of the optimal growing season for maximizing crop production. In this study, we employed <sup>15</sup>N isotope labeling, high-throughput sequencing, and quantitative polymerase chain reaction (qPCR) techniques to investigate the effects of two distinct growing seasons on microbial communities and maize <sup>15</sup>N uptake ratios (<sup>15</sup>NUR). Our results showed that the warm growing season (26.6 °C) increased microbial diversity, reduced network complexity but enhanced stability, decreased microbial associations, and increased modularization compared to the cool growing season (23.1 °C). Additionally, the warm growing season favored oligotrophic species and increased the abundance of microbial guilds and functional genes related to N, phosphorus, and sulfur cycling. Furthermore, alterations in the characteristics of soil microbial keystone taxa were closely linked to variations in maize <sup>15</sup>NUR. Overall, our findings demonstrate significant seasonal variations in soil microbial diversity and functioning, with maize exhibiting higher <sup>15</sup>NUR during the warm growing season of the double cropping system.</div></div>","PeriodicalId":18564,"journal":{"name":"Microbiological research","volume":null,"pages":null},"PeriodicalIF":6.1000,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiological research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0944501324003379","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The influence of nitrogen (N) inputs on soil microbial communities and N uptake by plants is well-documented. Seasonal variations further impact these microbial communities and their nutrient-cycling functions, particularly within multiple cropping systems. Nevertheless, the combined effects of N fertilization and growing seasons on soil microbial communities and plant N uptake remain ambiguous, thereby constraining our comprehension of the optimal growing season for maximizing crop production. In this study, we employed 15N isotope labeling, high-throughput sequencing, and quantitative polymerase chain reaction (qPCR) techniques to investigate the effects of two distinct growing seasons on microbial communities and maize 15N uptake ratios (15NUR). Our results showed that the warm growing season (26.6 °C) increased microbial diversity, reduced network complexity but enhanced stability, decreased microbial associations, and increased modularization compared to the cool growing season (23.1 °C). Additionally, the warm growing season favored oligotrophic species and increased the abundance of microbial guilds and functional genes related to N, phosphorus, and sulfur cycling. Furthermore, alterations in the characteristics of soil microbial keystone taxa were closely linked to variations in maize 15NUR. Overall, our findings demonstrate significant seasonal variations in soil microbial diversity and functioning, with maize exhibiting higher 15NUR during the warm growing season of the double cropping system.
期刊介绍:
Microbiological Research is devoted to publishing reports on prokaryotic and eukaryotic microorganisms such as yeasts, fungi, bacteria, archaea, and protozoa. Research on interactions between pathogenic microorganisms and their environment or hosts are also covered.