Zilin Tan , Liangjie Tian , Yang Luo , Kexin Ai , Xuehua Zhang , Haitao Yuan , Jinfan Zhou , Guangyao Ye , Shuofei Yang , Ming Zhong , Gaohua Li , Yanan Wang
{"title":"Preventing postsurgical colorectal cancer relapse: A hemostatic hydrogel loaded with METTL3 inhibitor for CAR-NK cell therapy","authors":"Zilin Tan , Liangjie Tian , Yang Luo , Kexin Ai , Xuehua Zhang , Haitao Yuan , Jinfan Zhou , Guangyao Ye , Shuofei Yang , Ming Zhong , Gaohua Li , Yanan Wang","doi":"10.1016/j.bioactmat.2024.10.015","DOIUrl":null,"url":null,"abstract":"<div><div>Colorectal cancer (CRC) recurrence post-surgery remains a major challenge. While Chimeric Antigen Receptor (CAR)-engineered natural killer (NK) cells hold immense therapeutic potential, their intratumoral infiltration ability remains limited, hampering efficacy. Building upon prior research suggesting that chemokines like C-X-C motif chemokine ligand 9 (CXCL9) and C-X-C motif chemokine ligand 10 (CXCL10) recruit CAR-NK cells, we hypothesized that tumor cell m6A methylation, regulated by Methyltransferase-like 3 (METTL3), influences chemokine secretion. This study aims to elucidate the underlying mechanisms and improve METTL3 inhibition efficiency. We designed an adhesive hemostasis hydrogel loaded with STM2457, a METTL3 inhibitor, aimed at sustained release in the acidic tumor microenvironment. In vitro, the hydrogel promoted CAR-NK cell recruitment and tumor killing via sustained METTL3 inhibition. The hydrogel's Schiff base bonds further enabled intestinal adhesion and hemostasis in an incomplete tumor resection model of CRC. Combining the hydrogel with CAR-NK cell therapy significantly reduced CRC recurrence in vivo. Overall, our study reveals the crucial role of METTL3 in CRC recurrence and proposes a promising, multimodal strategy using STM2457-loaded hydrogel and CAR-NK cells for enhanced therapeutic efficacy.</div></div>","PeriodicalId":8762,"journal":{"name":"Bioactive Materials","volume":"44 ","pages":"Pages 236-255"},"PeriodicalIF":18.0000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioactive Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452199X24004602","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Colorectal cancer (CRC) recurrence post-surgery remains a major challenge. While Chimeric Antigen Receptor (CAR)-engineered natural killer (NK) cells hold immense therapeutic potential, their intratumoral infiltration ability remains limited, hampering efficacy. Building upon prior research suggesting that chemokines like C-X-C motif chemokine ligand 9 (CXCL9) and C-X-C motif chemokine ligand 10 (CXCL10) recruit CAR-NK cells, we hypothesized that tumor cell m6A methylation, regulated by Methyltransferase-like 3 (METTL3), influences chemokine secretion. This study aims to elucidate the underlying mechanisms and improve METTL3 inhibition efficiency. We designed an adhesive hemostasis hydrogel loaded with STM2457, a METTL3 inhibitor, aimed at sustained release in the acidic tumor microenvironment. In vitro, the hydrogel promoted CAR-NK cell recruitment and tumor killing via sustained METTL3 inhibition. The hydrogel's Schiff base bonds further enabled intestinal adhesion and hemostasis in an incomplete tumor resection model of CRC. Combining the hydrogel with CAR-NK cell therapy significantly reduced CRC recurrence in vivo. Overall, our study reveals the crucial role of METTL3 in CRC recurrence and proposes a promising, multimodal strategy using STM2457-loaded hydrogel and CAR-NK cells for enhanced therapeutic efficacy.
Bioactive MaterialsBiochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
28.00
自引率
6.30%
发文量
436
审稿时长
20 days
期刊介绍:
Bioactive Materials is a peer-reviewed research publication that focuses on advancements in bioactive materials. The journal accepts research papers, reviews, and rapid communications in the field of next-generation biomaterials that interact with cells, tissues, and organs in various living organisms.
The primary goal of Bioactive Materials is to promote the science and engineering of biomaterials that exhibit adaptiveness to the biological environment. These materials are specifically designed to stimulate or direct appropriate cell and tissue responses or regulate interactions with microorganisms.
The journal covers a wide range of bioactive materials, including those that are engineered or designed in terms of their physical form (e.g. particulate, fiber), topology (e.g. porosity, surface roughness), or dimensions (ranging from macro to nano-scales). Contributions are sought from the following categories of bioactive materials:
Bioactive metals and alloys
Bioactive inorganics: ceramics, glasses, and carbon-based materials
Bioactive polymers and gels
Bioactive materials derived from natural sources
Bioactive composites
These materials find applications in human and veterinary medicine, such as implants, tissue engineering scaffolds, cell/drug/gene carriers, as well as imaging and sensing devices.