Multi-view support vector machine classifier via L0/1 soft-margin loss with structural information

IF 14.7 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Chen Chen , Qianfei Liu , Renpeng Xu , Ying Zhang , Huiru Wang , Qingmin Yu
{"title":"Multi-view support vector machine classifier via L0/1 soft-margin loss with structural information","authors":"Chen Chen ,&nbsp;Qianfei Liu ,&nbsp;Renpeng Xu ,&nbsp;Ying Zhang ,&nbsp;Huiru Wang ,&nbsp;Qingmin Yu","doi":"10.1016/j.inffus.2024.102733","DOIUrl":null,"url":null,"abstract":"<div><div>Multi-view learning seeks to leverage the advantages of various views to complement each other and make full use of the latent information in the data. Nevertheless, effectively exploring and utilizing common and complementary information across diverse views remains challenging. In this paper, we propose two multi-view classifiers: multi-view support vector machine via <span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>0</mn><mo>/</mo><mn>1</mn></mrow></msub></math></span> soft-margin loss (Mv<span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>0</mn><mo>/</mo><mn>1</mn></mrow></msub></math></span>-SVM) and structural Mv<span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>0</mn><mo>/</mo><mn>1</mn></mrow></msub></math></span>-SVM (Mv<span><math><mrow><mi>S</mi><msub><mrow><mi>L</mi></mrow><mrow><mn>0</mn><mo>/</mo><mn>1</mn></mrow></msub></mrow></math></span>-SVM). The key difference between them is that Mv<span><math><mrow><mi>S</mi><msub><mrow><mi>L</mi></mrow><mrow><mn>0</mn><mo>/</mo><mn>1</mn></mrow></msub></mrow></math></span>-SVM additionally fuses structural information, which simultaneously satisfies the consensus and complementarity principles. Despite the discrete nature inherent in the <span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>0</mn><mo>/</mo><mn>1</mn></mrow></msub></math></span> soft-margin loss, we successfully establish the optimality theory for Mv<span><math><mrow><mi>S</mi><msub><mrow><mi>L</mi></mrow><mrow><mn>0</mn><mo>/</mo><mn>1</mn></mrow></msub></mrow></math></span>-SVM. This includes demonstrating the existence of optimal solutions and elucidating their relationships with P-stationary points. Drawing inspiration from the P-stationary point optimality condition, we design and integrate a working set strategy into the proximal alternating direction method of multipliers. This integration significantly enhances the overall computational speed and diminishes the number of support vectors. Last but not least, numerical experiments show that our suggested models perform exceptionally well and have faster computational speed, affirming the rationality and effectiveness of our methods.</div></div>","PeriodicalId":50367,"journal":{"name":"Information Fusion","volume":"115 ","pages":"Article 102733"},"PeriodicalIF":14.7000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Fusion","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1566253524005116","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Multi-view learning seeks to leverage the advantages of various views to complement each other and make full use of the latent information in the data. Nevertheless, effectively exploring and utilizing common and complementary information across diverse views remains challenging. In this paper, we propose two multi-view classifiers: multi-view support vector machine via L0/1 soft-margin loss (MvL0/1-SVM) and structural MvL0/1-SVM (MvSL0/1-SVM). The key difference between them is that MvSL0/1-SVM additionally fuses structural information, which simultaneously satisfies the consensus and complementarity principles. Despite the discrete nature inherent in the L0/1 soft-margin loss, we successfully establish the optimality theory for MvSL0/1-SVM. This includes demonstrating the existence of optimal solutions and elucidating their relationships with P-stationary points. Drawing inspiration from the P-stationary point optimality condition, we design and integrate a working set strategy into the proximal alternating direction method of multipliers. This integration significantly enhances the overall computational speed and diminishes the number of support vectors. Last but not least, numerical experiments show that our suggested models perform exceptionally well and have faster computational speed, affirming the rationality and effectiveness of our methods.
通过具有结构信息的 L0/1 软边际损失实现多视角支持向量机分类器
多视图学习旨在利用各种视图的优势,取长补短,充分利用数据中的潜在信息。然而,有效地探索和利用不同视图之间的共同和互补信息仍是一项挑战。本文提出了两种多视图分类器:通过 L0/1 软边际损失的多视图支持向量机(MvL0/1-SVM)和结构 MvL0/1-SVM (MvSL0/1-SVM)。它们之间的主要区别在于,MvSL0/1-SVM 还融合了结构信息,同时满足共识和互补原则。尽管 L0/1 软边际损失具有固有的离散性,我们还是成功地建立了 MvSL0/1-SVM 的最优性理论。这包括证明最优解的存在,并阐明它们与 P-stationary 点的关系。从 P-stationary 点最优条件中汲取灵感,我们设计了一种工作集策略,并将其集成到近似交替方向乘法中。这种整合大大提高了整体计算速度,并减少了支持向量的数量。最后但并非最不重要的一点是,数值实验表明,我们建议的模型性能优异,计算速度更快,从而肯定了我们方法的合理性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Information Fusion
Information Fusion 工程技术-计算机:理论方法
CiteScore
33.20
自引率
4.30%
发文量
161
审稿时长
7.9 months
期刊介绍: Information Fusion serves as a central platform for showcasing advancements in multi-sensor, multi-source, multi-process information fusion, fostering collaboration among diverse disciplines driving its progress. It is the leading outlet for sharing research and development in this field, focusing on architectures, algorithms, and applications. Papers dealing with fundamental theoretical analyses as well as those demonstrating their application to real-world problems will be welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信