Weighted Moore-Penrose inverses for dual matrices and its applications

IF 3.5 2区 数学 Q1 MATHEMATICS, APPLIED
Haifeng Ma , Wen Wang , Predrag S. Stanimirović
{"title":"Weighted Moore-Penrose inverses for dual matrices and its applications","authors":"Haifeng Ma ,&nbsp;Wen Wang ,&nbsp;Predrag S. Stanimirović","doi":"10.1016/j.amc.2024.129145","DOIUrl":null,"url":null,"abstract":"<div><div>Characteristics of weighted Moore-Penrose inverses for dual matrices (W-MP-D inverse) are studied in this investigation. First, we introduce the weighted compact dual singular value decomposition (WCDSVD) on the set of dual matrices. A few equivalent conditions for the existence of the W-MP-D inverse on the set of dual matrices and several explicit representations are given using WCDSVD. Finally, the simulation of standing waves (s-waves) and traveling waves (t-waves) and the application of that simulation in the t-waves identification in the brain are given.</div></div>","PeriodicalId":55496,"journal":{"name":"Applied Mathematics and Computation","volume":"489 ","pages":"Article 129145"},"PeriodicalIF":3.5000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300324006064","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Characteristics of weighted Moore-Penrose inverses for dual matrices (W-MP-D inverse) are studied in this investigation. First, we introduce the weighted compact dual singular value decomposition (WCDSVD) on the set of dual matrices. A few equivalent conditions for the existence of the W-MP-D inverse on the set of dual matrices and several explicit representations are given using WCDSVD. Finally, the simulation of standing waves (s-waves) and traveling waves (t-waves) and the application of that simulation in the t-waves identification in the brain are given.
对偶矩阵的加权摩尔-彭罗斯求逆及其应用
本文研究了对偶矩阵的加权摩尔-彭罗斯逆(W-MP-D 逆)的特征。首先,我们介绍了对偶矩阵集合上的加权紧凑对偶奇异值分解(WCDSVD)。利用 WCDSVD 给出了对偶矩阵集合上 W-MP-D 逆存在的几个等价条件和几个显式表示。最后,给出了驻波(s 波)和行波(t 波)的模拟以及该模拟在大脑 t 波识别中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.90
自引率
10.00%
发文量
755
审稿时长
36 days
期刊介绍: Applied Mathematics and Computation addresses work at the interface between applied mathematics, numerical computation, and applications of systems – oriented ideas to the physical, biological, social, and behavioral sciences, and emphasizes papers of a computational nature focusing on new algorithms, their analysis and numerical results. In addition to presenting research papers, Applied Mathematics and Computation publishes review articles and single–topics issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信