Convergence analysis of collocation solutions for delay Volterra integral equations with weakly singular kernels

IF 3.5 2区 数学 Q1 MATHEMATICS, APPLIED
P. Peyrovan , A. Tari , H. Brunner
{"title":"Convergence analysis of collocation solutions for delay Volterra integral equations with weakly singular kernels","authors":"P. Peyrovan ,&nbsp;A. Tari ,&nbsp;H. Brunner","doi":"10.1016/j.amc.2024.129122","DOIUrl":null,"url":null,"abstract":"<div><div>Convergence analysis of the collocation solutions for second-kind Volterra integral equations (VIEs) with weakly singular kernels (WSKs) in continuous piecewise polynomial space (PPS) under certain conditions on the collocation parameters has been established previously. In this paper, we study the analogue convergence analysis for delay Volterra integral equations (DVIEs) with WSKs and vanishing delay. We also investigate the existence, uniqueness and regularity of solution. Finally, we present some illustrative numerical examples to confirm the theoretical results.</div></div>","PeriodicalId":55496,"journal":{"name":"Applied Mathematics and Computation","volume":"489 ","pages":"Article 129122"},"PeriodicalIF":3.5000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300324005836","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Convergence analysis of the collocation solutions for second-kind Volterra integral equations (VIEs) with weakly singular kernels (WSKs) in continuous piecewise polynomial space (PPS) under certain conditions on the collocation parameters has been established previously. In this paper, we study the analogue convergence analysis for delay Volterra integral equations (DVIEs) with WSKs and vanishing delay. We also investigate the existence, uniqueness and regularity of solution. Finally, we present some illustrative numerical examples to confirm the theoretical results.
具有弱奇异核的延迟 Volterra 积分方程配位解的收敛性分析
对于连续片断多项式空间(PPS)中具有弱奇异内核(WSKs)的第二类伏特拉积分方程(VIEs),在一定的配位参数条件下,其配位解的收敛性分析已经建立。本文研究了具有 WSK 和消失延迟的延迟 Volterra 积分方程 (DVIE) 的类比收敛分析。我们还研究了解的存在性、唯一性和正则性。最后,我们给出了一些数值示例来证实理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.90
自引率
10.00%
发文量
755
审稿时长
36 days
期刊介绍: Applied Mathematics and Computation addresses work at the interface between applied mathematics, numerical computation, and applications of systems – oriented ideas to the physical, biological, social, and behavioral sciences, and emphasizes papers of a computational nature focusing on new algorithms, their analysis and numerical results. In addition to presenting research papers, Applied Mathematics and Computation publishes review articles and single–topics issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信