Continuous processing of JP-10 production: Hydroisomerization of endo-tetrahydrodicyclopentadiene to exo-tetrahydrodicyclopentadiene using a novel bimetal catalyst of Ba/Se supported on TiO2/SO4
P. Jayapradha , P. Tamizhdurai , C. Kavitha , V.L. Mangesh , Ashma Abubakker , S. Jayakumar , P. Saravanan , Krishna Kumar Yadav , Maha Awjan Alreshidi , Sultan Alshehery , Haifa A. Alqhtani , May Bin-Jumah
{"title":"Continuous processing of JP-10 production: Hydroisomerization of endo-tetrahydrodicyclopentadiene to exo-tetrahydrodicyclopentadiene using a novel bimetal catalyst of Ba/Se supported on TiO2/SO4","authors":"P. Jayapradha , P. Tamizhdurai , C. Kavitha , V.L. Mangesh , Ashma Abubakker , S. Jayakumar , P. Saravanan , Krishna Kumar Yadav , Maha Awjan Alreshidi , Sultan Alshehery , Haifa A. Alqhtani , May Bin-Jumah","doi":"10.1016/j.jscs.2024.101951","DOIUrl":null,"url":null,"abstract":"<div><div>High-energy-density liquid fuels can be utilized as an energetic supplement to conventional fuels and are essential for volume-limited aerospace vehicles to boost payload and flying range. JP-10 has attracted much attention because of its high density, flash point, high volumetric heat, and low freezing point. Here we report the hydroisomerization of <em>endo</em>-tetrahydrodicyclopentadiene to <em>exo</em>-tetrahydrodicyclopentadiene (the main component of JP-10) was investigated over the TiO<sub>2</sub>/SO<sub>4</sub> supported Ba(10 %)/Se(5–20 %) catalysts. This work aims to examine changes in continuous processing settings to maximize <em>exo</em>-THDCPD production, selectivity, and conversion. It was discovered that the synthesized TiO<sub>2</sub>/SO<sub>4</sub>/Ba(10 %)/Se(5–20 %) heterogeneous catalysts were novel, more effective, affordable, environmentally friendly, and simple to produce. The catalyst’s physicochemical characteristics were examined using FT-IR, BET, XRD, HR-SEM, HR-TEM, TGA and NH<sub>3</sub>-TPD. The produced TiO<sub>2</sub>/SO<sub>4</sub>/Ba(10 %)/Se(5–20 %) nano-catalysts have good catalytic activity and a wide range of active Lewis and Brønsted acid sites. Evaluation of the isomerization of <em>endo</em>-THDCPD to <em>exo</em>-THDCPD was conducted in a high-pressure fixed-bed continuous reactor operating at 200 °C, 20 bar of pressure, and 4.0mol/h of H<sub>2</sub> flow rate. According to the investigations, the synthesized catalyst with a 15 % Se load performs exceptionally well, exhibiting 100 % conversion, 98.5 % selectivity, and 98.5 % yield at an H<sub>2</sub> flow rate of 10 ml/min. The isomerized product is used in Jet Propellant-10, a high-density fuel. Under ideal circumstances, <em>exo</em>-THDCPD with a high degree of purity (>98 wt%) was produced without the need for any sort of separation technique.</div></div>","PeriodicalId":16974,"journal":{"name":"Journal of Saudi Chemical Society","volume":"28 6","pages":"Article 101951"},"PeriodicalIF":5.8000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Saudi Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1319610324001467","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
High-energy-density liquid fuels can be utilized as an energetic supplement to conventional fuels and are essential for volume-limited aerospace vehicles to boost payload and flying range. JP-10 has attracted much attention because of its high density, flash point, high volumetric heat, and low freezing point. Here we report the hydroisomerization of endo-tetrahydrodicyclopentadiene to exo-tetrahydrodicyclopentadiene (the main component of JP-10) was investigated over the TiO2/SO4 supported Ba(10 %)/Se(5–20 %) catalysts. This work aims to examine changes in continuous processing settings to maximize exo-THDCPD production, selectivity, and conversion. It was discovered that the synthesized TiO2/SO4/Ba(10 %)/Se(5–20 %) heterogeneous catalysts were novel, more effective, affordable, environmentally friendly, and simple to produce. The catalyst’s physicochemical characteristics were examined using FT-IR, BET, XRD, HR-SEM, HR-TEM, TGA and NH3-TPD. The produced TiO2/SO4/Ba(10 %)/Se(5–20 %) nano-catalysts have good catalytic activity and a wide range of active Lewis and Brønsted acid sites. Evaluation of the isomerization of endo-THDCPD to exo-THDCPD was conducted in a high-pressure fixed-bed continuous reactor operating at 200 °C, 20 bar of pressure, and 4.0mol/h of H2 flow rate. According to the investigations, the synthesized catalyst with a 15 % Se load performs exceptionally well, exhibiting 100 % conversion, 98.5 % selectivity, and 98.5 % yield at an H2 flow rate of 10 ml/min. The isomerized product is used in Jet Propellant-10, a high-density fuel. Under ideal circumstances, exo-THDCPD with a high degree of purity (>98 wt%) was produced without the need for any sort of separation technique.
期刊介绍:
Journal of Saudi Chemical Society is an English language, peer-reviewed scholarly publication in the area of chemistry. Journal of Saudi Chemical Society publishes original papers, reviews and short reports on, but not limited to:
•Inorganic chemistry
•Physical chemistry
•Organic chemistry
•Analytical chemistry
Journal of Saudi Chemical Society is the official publication of the Saudi Chemical Society and is published by King Saud University in collaboration with Elsevier and is edited by an international group of eminent researchers.