Engineering a Galinstan-based ferromagnetic fluid for heat management

IF 9.9 1区 工程技术 Q1 ENERGY & FUELS
J.P. Maganinho , R.M.C. Pinto , V. Andrade , B.G.F. Eggert , C. Frommen , J.P. Araújo , J.O. Ventura , J. Oliveira , A.L. Pires , J.H. Belo
{"title":"Engineering a Galinstan-based ferromagnetic fluid for heat management","authors":"J.P. Maganinho ,&nbsp;R.M.C. Pinto ,&nbsp;V. Andrade ,&nbsp;B.G.F. Eggert ,&nbsp;C. Frommen ,&nbsp;J.P. Araújo ,&nbsp;J.O. Ventura ,&nbsp;J. Oliveira ,&nbsp;A.L. Pires ,&nbsp;J.H. Belo","doi":"10.1016/j.enconman.2024.119130","DOIUrl":null,"url":null,"abstract":"<div><div>The development of increasingly smaller electronic devices brings on heat dissipation challenges, which can severely hinder their performance. Consequently, there is a critical need to maintain the working temperature of these devices at optimal values. At room temperature, the versatile design and adaptability of fluidic thermal switches makes them an auspicious solution. In this work, the large heat conductivity and magnetic material compatibility of Galinstan motivated the production of a novel ferromagnetic fluid. Through mechanical alloying within an inert atmosphere, we embedded Ni microparticles in a Galinstan matrix, which provided a liquid metal with a ferromagnetic behavior. This fluid is suitable for a wide range of applications in thermal management. Here, we experimentally demonstrate that a Galinstan-based mixture containing 2<em>.</em>6 wt% of Ni can serve as heat exchange medium in a magnetically activated fluidic thermal switch device. This mixture establishes an optimal thermal bridge between heat source and sink, enabling heat dissipation from the source. This effect intensifies with the device operating frequency, reaching a maximum temperature span of 19<em>.</em>8 % and a maximum switching ratio of 1.26<em>.</em> These results demonstrate the potential of the developed fluid to be integrated into fluidic technologies for temperature control of electronic components.</div></div>","PeriodicalId":11664,"journal":{"name":"Energy Conversion and Management","volume":"322 ","pages":"Article 119130"},"PeriodicalIF":9.9000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Conversion and Management","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196890424010719","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The development of increasingly smaller electronic devices brings on heat dissipation challenges, which can severely hinder their performance. Consequently, there is a critical need to maintain the working temperature of these devices at optimal values. At room temperature, the versatile design and adaptability of fluidic thermal switches makes them an auspicious solution. In this work, the large heat conductivity and magnetic material compatibility of Galinstan motivated the production of a novel ferromagnetic fluid. Through mechanical alloying within an inert atmosphere, we embedded Ni microparticles in a Galinstan matrix, which provided a liquid metal with a ferromagnetic behavior. This fluid is suitable for a wide range of applications in thermal management. Here, we experimentally demonstrate that a Galinstan-based mixture containing 2.6 wt% of Ni can serve as heat exchange medium in a magnetically activated fluidic thermal switch device. This mixture establishes an optimal thermal bridge between heat source and sink, enabling heat dissipation from the source. This effect intensifies with the device operating frequency, reaching a maximum temperature span of 19.8 % and a maximum switching ratio of 1.26. These results demonstrate the potential of the developed fluid to be integrated into fluidic technologies for temperature control of electronic components.

Abstract Image

用于热管理的伽林斯坦基铁磁流体工程学
电子设备的体积越来越小,这给散热带来了挑战,严重影响了设备的性能。因此,亟需将这些设备的工作温度保持在最佳值。在室温下,流体热开关的多功能设计和适应性使其成为一种理想的解决方案。在这项工作中,Galinstan 的高导热性和磁性材料兼容性促使我们生产出一种新型铁磁流体。通过在惰性气氛中进行机械合金化,我们将镍微粒嵌入到加林斯坦基体中,从而获得了一种具有铁磁性能的液态金属。这种液体可广泛应用于热管理领域。在此,我们通过实验证明,含有 2.6 wt% Ni 的 Galinstan 基混合物可用作磁激活流体热开关设备中的热交换介质。这种混合物能在热源和散热片之间建立最佳热桥,从而实现热源的散热。这种效果随着设备工作频率的提高而增强,最大温度跨度达到 19.8%,最大开关比达到 1.26。这些结果表明,所开发的流体具有集成到电子元件温度控制流体技术中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy Conversion and Management
Energy Conversion and Management 工程技术-力学
CiteScore
19.00
自引率
11.50%
发文量
1304
审稿时长
17 days
期刊介绍: The journal Energy Conversion and Management provides a forum for publishing original contributions and comprehensive technical review articles of interdisciplinary and original research on all important energy topics. The topics considered include energy generation, utilization, conversion, storage, transmission, conservation, management and sustainability. These topics typically involve various types of energy such as mechanical, thermal, nuclear, chemical, electromagnetic, magnetic and electric. These energy types cover all known energy resources, including renewable resources (e.g., solar, bio, hydro, wind, geothermal and ocean energy), fossil fuels and nuclear resources.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信