Low-valent manganese active sites: Insight into reinforced interaction with sulfonated anthraquinone dye and kinetic adsorption studies over iron-modified cryptomelane
{"title":"Low-valent manganese active sites: Insight into reinforced interaction with sulfonated anthraquinone dye and kinetic adsorption studies over iron-modified cryptomelane","authors":"Quoc-Dat Le , Thanh-Thao Pham-Ngoc , Ngoc-Thien Nguyen , Nhat-Truong Truong , Hai-Nam Tran , Dung Van Nguyen , Tuyet-Mai Tran-Thuy","doi":"10.1016/j.ceja.2024.100665","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a facial co-precipitation method to enrich low-valent manganese sites for iron-doped cryptomelane. Fourier-transform infrared spectroscopy exhibits a noticeable enhancement of both vibrations at 1041 and 1116 cm<sup>-1</sup> ascribed to Mn<sup>3+</sup>-OH bond over as-prepared materials. X-ray diffraction, scanning electron microscopy, Raman spectroscopy, the temperature-programmed desorption of oxygen and inductively coupled plasma-mass spectrometry results all verify the increase in oxygen vacancies on iron-doped cryptomelane. The vital role of Mn<sup>3+</sup>-OH sites for adsorptive removal of acid blue 62 (AB62) was experimentally evident when adsorption capacity (Q<sub>e</sub>, mg<sub>AB62</sub>/g<sub>adsorbent</sub>) increased from 54 ± 1.3 mg/g (for non-doped cryptomelane) to 161 ± 6.7 mg/g (for Fe-0.15) at initial pH 5.7. The decrease of Q<sub>e</sub> from 313 mg/g (for initial pH 3.70) to 67 mg/g (for initial pH 9.95) over Fe-0.15 suggests protonation in acid media and deprotonation in basic media, reflecting efficient Mn<sup>3+</sup>-OH sites for reinforced interaction with sulfonate groups. The disappearance of sharp bands at 1041 and 1116 cm<sup>-1</sup> after adsorption and the replenishment of a broad band at ∼1250 cm<sup>-1</sup> over Fe-0.15 demonstrate the displacement of sulfonate groups by -OH species (from Mn<sup>3+</sup>-OH sites). Moreover, the deterioration of two stretching modes for O=S=O at 1187 and 1230 cm<sup>-1</sup> after adsorption reveals the formation of a monodentate or bidentate complex. Kinetic studies confirm the compatibility of AB62 chemisorption over Fe-0.15 with the pseudo-second-order kinetic, Elovich, and Langmuir isotherm models. The current findings first support evidences for the AB62 chemisorption on iron-doped cryptomelane and a Fe-0.15-feasible adsorbent for removal of sulfonated anthraquinone dye.</div></div>","PeriodicalId":9749,"journal":{"name":"Chemical Engineering Journal Advances","volume":"20 ","pages":"Article 100665"},"PeriodicalIF":5.5000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666821124000826","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents a facial co-precipitation method to enrich low-valent manganese sites for iron-doped cryptomelane. Fourier-transform infrared spectroscopy exhibits a noticeable enhancement of both vibrations at 1041 and 1116 cm-1 ascribed to Mn3+-OH bond over as-prepared materials. X-ray diffraction, scanning electron microscopy, Raman spectroscopy, the temperature-programmed desorption of oxygen and inductively coupled plasma-mass spectrometry results all verify the increase in oxygen vacancies on iron-doped cryptomelane. The vital role of Mn3+-OH sites for adsorptive removal of acid blue 62 (AB62) was experimentally evident when adsorption capacity (Qe, mgAB62/gadsorbent) increased from 54 ± 1.3 mg/g (for non-doped cryptomelane) to 161 ± 6.7 mg/g (for Fe-0.15) at initial pH 5.7. The decrease of Qe from 313 mg/g (for initial pH 3.70) to 67 mg/g (for initial pH 9.95) over Fe-0.15 suggests protonation in acid media and deprotonation in basic media, reflecting efficient Mn3+-OH sites for reinforced interaction with sulfonate groups. The disappearance of sharp bands at 1041 and 1116 cm-1 after adsorption and the replenishment of a broad band at ∼1250 cm-1 over Fe-0.15 demonstrate the displacement of sulfonate groups by -OH species (from Mn3+-OH sites). Moreover, the deterioration of two stretching modes for O=S=O at 1187 and 1230 cm-1 after adsorption reveals the formation of a monodentate or bidentate complex. Kinetic studies confirm the compatibility of AB62 chemisorption over Fe-0.15 with the pseudo-second-order kinetic, Elovich, and Langmuir isotherm models. The current findings first support evidences for the AB62 chemisorption on iron-doped cryptomelane and a Fe-0.15-feasible adsorbent for removal of sulfonated anthraquinone dye.