A hybrid predictive modeling approach for catalyzed polymerization reactors

IF 5.5 Q1 ENGINEERING, CHEMICAL
Omid Sobhani , Hamid Toliati , Furkan Elmaz , Shahab Pormoradi Gerdposhteh , Benedict Carius , Kevin Mets , Siegfried Mercelis
{"title":"A hybrid predictive modeling approach for catalyzed polymerization reactors","authors":"Omid Sobhani ,&nbsp;Hamid Toliati ,&nbsp;Furkan Elmaz ,&nbsp;Shahab Pormoradi Gerdposhteh ,&nbsp;Benedict Carius ,&nbsp;Kevin Mets ,&nbsp;Siegfried Mercelis","doi":"10.1016/j.ceja.2024.100662","DOIUrl":null,"url":null,"abstract":"<div><div>Polymerization reactions are characterized by complex, nonlinear behaviors that pose significant challenges for conventional modeling techniques. Accurate and reliable models are crucial for advancing material science and enabling technological innovations across various industries. Conventional first-principles models often fall short in capturing the intricate dynamics of polymeric systems, leading to limitations in predictive accuracy. In this work, we propose a novel hybrid modeling approach that combines a conventional first-principles model with the strengths of a data-driven multi-layer perceptron (MLP) model and also a linear regression (LR) model to enhance the predictability of polymerization processes. Utilizing this hybrid approach significantly reduces the mean absolute error for predicting the concentrations of main reagents by 84% and 86%, respectively, in experiments with significantly deviant outcomes. Our results indicate that the model is capable of predicting the concentrations of both the main and side products with a maximum error margin of 3.5%.</div></div>","PeriodicalId":9749,"journal":{"name":"Chemical Engineering Journal Advances","volume":"20 ","pages":"Article 100662"},"PeriodicalIF":5.5000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666821124000796","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Polymerization reactions are characterized by complex, nonlinear behaviors that pose significant challenges for conventional modeling techniques. Accurate and reliable models are crucial for advancing material science and enabling technological innovations across various industries. Conventional first-principles models often fall short in capturing the intricate dynamics of polymeric systems, leading to limitations in predictive accuracy. In this work, we propose a novel hybrid modeling approach that combines a conventional first-principles model with the strengths of a data-driven multi-layer perceptron (MLP) model and also a linear regression (LR) model to enhance the predictability of polymerization processes. Utilizing this hybrid approach significantly reduces the mean absolute error for predicting the concentrations of main reagents by 84% and 86%, respectively, in experiments with significantly deviant outcomes. Our results indicate that the model is capable of predicting the concentrations of both the main and side products with a maximum error margin of 3.5%.
催化聚合反应器的混合预测建模方法
聚合反应的特点是复杂的非线性行为,这给传统建模技术带来了巨大挑战。准确可靠的模型对于推动材料科学的发展和促进各行各业的技术创新至关重要。传统的第一原理模型往往无法捕捉到聚合物系统错综复杂的动力学特性,从而导致预测精度受到限制。在这项工作中,我们提出了一种新型混合建模方法,它将传统的第一原理模型与数据驱动的多层感知器(MLP)模型和线性回归(LR)模型的优势相结合,以提高聚合过程的可预测性。利用这种混合方法,在结果出现明显偏差的实验中,预测主要试剂浓度的平均绝对误差分别大幅降低了 84% 和 86%。我们的结果表明,该模型能够预测主产物和副产物的浓度,最大误差率为 3.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical Engineering Journal Advances
Chemical Engineering Journal Advances Engineering-Industrial and Manufacturing Engineering
CiteScore
8.30
自引率
0.00%
发文量
213
审稿时长
26 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信