{"title":"The dynamic behaviors between double-hump solitons in birefringent fibers","authors":"","doi":"10.1016/j.wavemoti.2024.103426","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we research the fractional coupled Hirota equations with variable coefficients describing the collisions of two waves in deep oceans and the propagation of ultrashort light pulses in birefringent fibers and successfully acquire the double-hump one-soliton, two-solitons and <em>N</em>-solitons solutions via the Hirota bilinear method. At the same time, the Bäcklund transformation and the corresponding soliton solutions are also obtained. Based on the precise forms of the solitons solutions, we gain double-hump solitons images with different shapes including U-shape, V-shape and wave-type by assigning proper functions to the group velocity dispersion and the third-order dispersion and analyze the interaction dynamics of double-hump solitons. It is worth noting that the Hirota bilinear operators involved here are fractional rather than integer, which has never appeared in previous literatures.</div></div>","PeriodicalId":49367,"journal":{"name":"Wave Motion","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wave Motion","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165212524001562","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we research the fractional coupled Hirota equations with variable coefficients describing the collisions of two waves in deep oceans and the propagation of ultrashort light pulses in birefringent fibers and successfully acquire the double-hump one-soliton, two-solitons and N-solitons solutions via the Hirota bilinear method. At the same time, the Bäcklund transformation and the corresponding soliton solutions are also obtained. Based on the precise forms of the solitons solutions, we gain double-hump solitons images with different shapes including U-shape, V-shape and wave-type by assigning proper functions to the group velocity dispersion and the third-order dispersion and analyze the interaction dynamics of double-hump solitons. It is worth noting that the Hirota bilinear operators involved here are fractional rather than integer, which has never appeared in previous literatures.
期刊介绍:
Wave Motion is devoted to the cross fertilization of ideas, and to stimulating interaction between workers in various research areas in which wave propagation phenomena play a dominant role. The description and analysis of wave propagation phenomena provides a unifying thread connecting diverse areas of engineering and the physical sciences such as acoustics, optics, geophysics, seismology, electromagnetic theory, solid and fluid mechanics.
The journal publishes papers on analytical, numerical and experimental methods. Papers that address fundamentally new topics in wave phenomena or develop wave propagation methods for solving direct and inverse problems are of interest to the journal.