Evaluating multimedia advertising campaign effectiveness

IF 6.7 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Pengyuan Wang , Guiyang Xiong , Will Wei Sun , Jian Yang
{"title":"Evaluating multimedia advertising campaign effectiveness","authors":"Pengyuan Wang ,&nbsp;Guiyang Xiong ,&nbsp;Will Wei Sun ,&nbsp;Jian Yang","doi":"10.1016/j.dss.2024.114348","DOIUrl":null,"url":null,"abstract":"<div><div>Companies increasingly combine multiple media outlets when launching advertising campaigns. This study employs causal forest to examine the effects of complex multimedia campaigns. The model effectively corrects for selection bias, automatically identifies informative consumer features, and performs automated data-driven consumer segmentation based on the consumer features identified. We analyze a large dataset involving around seven million consumers and four thousand covariates, and provide empirical evidence on the nonlinear effect of repeated ad exposures in the multimedia context, how such effect varies across consumer groups, and the contingent existence of multimedia synergy. We demonstrate that negligence of the selection bias and heterogeneity across segments results in suboptimal conversions and a waste of advertising resources. The analysis procedure that we propose can facilitate decision making for complex advertising campaigns to improve their effectiveness.</div></div>","PeriodicalId":55181,"journal":{"name":"Decision Support Systems","volume":"187 ","pages":"Article 114348"},"PeriodicalIF":6.7000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Decision Support Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167923624001817","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Companies increasingly combine multiple media outlets when launching advertising campaigns. This study employs causal forest to examine the effects of complex multimedia campaigns. The model effectively corrects for selection bias, automatically identifies informative consumer features, and performs automated data-driven consumer segmentation based on the consumer features identified. We analyze a large dataset involving around seven million consumers and four thousand covariates, and provide empirical evidence on the nonlinear effect of repeated ad exposures in the multimedia context, how such effect varies across consumer groups, and the contingent existence of multimedia synergy. We demonstrate that negligence of the selection bias and heterogeneity across segments results in suboptimal conversions and a waste of advertising resources. The analysis procedure that we propose can facilitate decision making for complex advertising campaigns to improve their effectiveness.
评估多媒体广告活动的效果
企业在开展广告活动时,越来越多地结合多种媒体渠道。本研究利用因果森林来研究复杂多媒体活动的效果。该模型能有效纠正选择偏差,自动识别消费者的信息特征,并根据识别出的消费者特征自动执行数据驱动的消费者细分。我们分析了一个涉及约七百万消费者和四千个协变量的大型数据集,并提供了多媒体背景下重复广告曝光的非线性效应、这种效应在不同消费群体间的差异以及多媒体协同效应偶然存在的经验证据。我们证明,忽视选择偏差和各细分市场的异质性会导致次优转化和广告资源的浪费。我们提出的分析程序有助于复杂广告活动的决策制定,从而提高广告活动的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Decision Support Systems
Decision Support Systems 工程技术-计算机:人工智能
CiteScore
14.70
自引率
6.70%
发文量
119
审稿时长
13 months
期刊介绍: The common thread of articles published in Decision Support Systems is their relevance to theoretical and technical issues in the support of enhanced decision making. The areas addressed may include foundations, functionality, interfaces, implementation, impacts, and evaluation of decision support systems (DSSs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信