Enhancing exemestane delivery: Solid lipid nanoparticles formulation and pharmacokinetic evaluation

IF 5.45 Q1 Physics and Astronomy
Bhupendra G. Prajapati , Payal Patel , Himanshu Paliwal , Dignesh Khunt
{"title":"Enhancing exemestane delivery: Solid lipid nanoparticles formulation and pharmacokinetic evaluation","authors":"Bhupendra G. Prajapati ,&nbsp;Payal Patel ,&nbsp;Himanshu Paliwal ,&nbsp;Dignesh Khunt","doi":"10.1016/j.nanoso.2024.101388","DOIUrl":null,"url":null,"abstract":"<div><div>This research investigates the development of exemestane (EXM) solid lipid nanoparticles (SLNs) for the purpose of improving drug delivery. To prepare EXM SLNs, glycerol monostearate was used as the lipid and Tween 80 as the surfactant and solvent injection followed by high-pressure homogenization as a method of preparation. The formulation parameters were optimized, leading to the development of a promising formula. The formula has a particle size of 188.72 ± 5.62 nm, a polydispersity index (PDI) of 0.215 ± 0.023, and an %EE of 65.39 ± 2.54 %. The formulation's robustness was indicated by minimal changes in particle size and %EE over 30 days, as revealed by stability studies. The bioavailability of EXM SLNs was found to be significantly improved in Wistar rats compared to conventional EXM suspension, as shown by pharmacokinetic studies. The formula that was optimized showed a higher maximum plasma concentration (Cmax) of 168.92 ± 2.40 ng/mL, a delayed time to reach Cmax (Tmax) of 4 hours, and significantly higher area under the curve (AUC) values. These results highlight the effectiveness of the optimized formula in improving drug absorption and bioavailability. The findings indicate that EXM SLNs show potential for enhancing the delivery and effectiveness of EXM, specifically in the treatment of breast cancer.</div></div>","PeriodicalId":397,"journal":{"name":"Nano-Structures & Nano-Objects","volume":"40 ","pages":"Article 101388"},"PeriodicalIF":5.4500,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Structures & Nano-Objects","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352507X24003007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

This research investigates the development of exemestane (EXM) solid lipid nanoparticles (SLNs) for the purpose of improving drug delivery. To prepare EXM SLNs, glycerol monostearate was used as the lipid and Tween 80 as the surfactant and solvent injection followed by high-pressure homogenization as a method of preparation. The formulation parameters were optimized, leading to the development of a promising formula. The formula has a particle size of 188.72 ± 5.62 nm, a polydispersity index (PDI) of 0.215 ± 0.023, and an %EE of 65.39 ± 2.54 %. The formulation's robustness was indicated by minimal changes in particle size and %EE over 30 days, as revealed by stability studies. The bioavailability of EXM SLNs was found to be significantly improved in Wistar rats compared to conventional EXM suspension, as shown by pharmacokinetic studies. The formula that was optimized showed a higher maximum plasma concentration (Cmax) of 168.92 ± 2.40 ng/mL, a delayed time to reach Cmax (Tmax) of 4 hours, and significantly higher area under the curve (AUC) values. These results highlight the effectiveness of the optimized formula in improving drug absorption and bioavailability. The findings indicate that EXM SLNs show potential for enhancing the delivery and effectiveness of EXM, specifically in the treatment of breast cancer.
加强依西美坦的给药:固体脂质纳米颗粒配方和药代动力学评估
本研究探讨了开发依西美坦(EXM)固体脂质纳米颗粒(SLNs)以改善药物输送的问题。为制备 EXM 固体脂质纳米粒,采用甘油单硬脂酸酯作为脂质,吐温 80 作为表面活性剂和溶剂注入法,然后采用高压均质法进行制备。对配方参数进行了优化,最终研制出一种前景看好的配方。该配方的粒径为 188.72 ± 5.62 nm,多分散指数(PDI)为 0.215 ± 0.023,EE%为 65.39 ± 2.54 %。稳定性研究表明,制剂在 30 天内的粒度和 %EE 变化极小,这表明制剂具有稳健性。药代动力学研究发现,与传统的 EXM 悬浮液相比,EXM SLNs 在 Wistar 大鼠体内的生物利用度明显提高。优化配方的最大血浆浓度(Cmax)为 168.92 ± 2.40 ng/mL,达到 Cmax 的时间延迟了 4 小时,曲线下面积(AUC)值也显著提高。这些结果凸显了优化配方在改善药物吸收和生物利用度方面的有效性。研究结果表明,EXM SLNs 在提高 EXM 的递送和有效性方面具有潜力,特别是在治疗乳腺癌方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nano-Structures & Nano-Objects
Nano-Structures & Nano-Objects Physics and Astronomy-Condensed Matter Physics
CiteScore
9.20
自引率
0.00%
发文量
60
审稿时长
22 days
期刊介绍: Nano-Structures & Nano-Objects is a new journal devoted to all aspects of the synthesis and the properties of this new flourishing domain. The journal is devoted to novel architectures at the nano-level with an emphasis on new synthesis and characterization methods. The journal is focused on the objects rather than on their applications. However, the research for new applications of original nano-structures & nano-objects in various fields such as nano-electronics, energy conversion, catalysis, drug delivery and nano-medicine is also welcome. The scope of Nano-Structures & Nano-Objects involves: -Metal and alloy nanoparticles with complex nanostructures such as shape control, core-shell and dumbells -Oxide nanoparticles and nanostructures, with complex oxide/metal, oxide/surface and oxide /organic interfaces -Inorganic semi-conducting nanoparticles (quantum dots) with an emphasis on new phases, structures, shapes and complexity -Nanostructures involving molecular inorganic species such as nanoparticles of coordination compounds, molecular magnets, spin transition nanoparticles etc. or organic nano-objects, in particular for molecular electronics -Nanostructured materials such as nano-MOFs and nano-zeolites -Hetero-junctions between molecules and nano-objects, between different nano-objects & nanostructures or between nano-objects & nanostructures and surfaces -Methods of characterization specific of the nano size or adapted for the nano size such as X-ray and neutron scattering, light scattering, NMR, Raman, Plasmonics, near field microscopies, various TEM and SEM techniques, magnetic studies, etc .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信