{"title":"A novel Acryloyloxy tamarind kernel powder biocompoites and enhanced antibacterial activity","authors":"Sakshi Saini, Jagram Meena","doi":"10.1016/j.nanoso.2024.101383","DOIUrl":null,"url":null,"abstract":"<div><div>This study aimed to develop eco-friendly biocomposites using acryloyl chloride as a graft monomer with tamarind kernel powder (TKP) as the polymer backbone and evaluate their antibacterial activity. The process involved the esterification of TKP with pre-synthesized acryloyl chloride as the grafting agent, resulting in a novel TKP derivative that enhances material properties. The biocomposites were subjected to comprehensive characterization, including morphological, structural, thermal, and antibacterial analyses. Through the modification with acrylic functionality, the biocomposite exhibited a crystallinity of approximately 51.77 %, a significant increase compared to the 33.56 % crystallinity observed in neat TKP. Moreover, the biocomposites showed enhanced antibacterial activity with an increase of 88 % against <em>Escherichia coli</em> and 74 % against <em>Staphylococcus aureus</em> holding potential for neat TKP. Given these improved characteristics the biocomposites hold potential applications in biomedical.</div></div>","PeriodicalId":397,"journal":{"name":"Nano-Structures & Nano-Objects","volume":"40 ","pages":"Article 101383"},"PeriodicalIF":5.4500,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Structures & Nano-Objects","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352507X24002956","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
This study aimed to develop eco-friendly biocomposites using acryloyl chloride as a graft monomer with tamarind kernel powder (TKP) as the polymer backbone and evaluate their antibacterial activity. The process involved the esterification of TKP with pre-synthesized acryloyl chloride as the grafting agent, resulting in a novel TKP derivative that enhances material properties. The biocomposites were subjected to comprehensive characterization, including morphological, structural, thermal, and antibacterial analyses. Through the modification with acrylic functionality, the biocomposite exhibited a crystallinity of approximately 51.77 %, a significant increase compared to the 33.56 % crystallinity observed in neat TKP. Moreover, the biocomposites showed enhanced antibacterial activity with an increase of 88 % against Escherichia coli and 74 % against Staphylococcus aureus holding potential for neat TKP. Given these improved characteristics the biocomposites hold potential applications in biomedical.
期刊介绍:
Nano-Structures & Nano-Objects is a new journal devoted to all aspects of the synthesis and the properties of this new flourishing domain. The journal is devoted to novel architectures at the nano-level with an emphasis on new synthesis and characterization methods. The journal is focused on the objects rather than on their applications. However, the research for new applications of original nano-structures & nano-objects in various fields such as nano-electronics, energy conversion, catalysis, drug delivery and nano-medicine is also welcome. The scope of Nano-Structures & Nano-Objects involves: -Metal and alloy nanoparticles with complex nanostructures such as shape control, core-shell and dumbells -Oxide nanoparticles and nanostructures, with complex oxide/metal, oxide/surface and oxide /organic interfaces -Inorganic semi-conducting nanoparticles (quantum dots) with an emphasis on new phases, structures, shapes and complexity -Nanostructures involving molecular inorganic species such as nanoparticles of coordination compounds, molecular magnets, spin transition nanoparticles etc. or organic nano-objects, in particular for molecular electronics -Nanostructured materials such as nano-MOFs and nano-zeolites -Hetero-junctions between molecules and nano-objects, between different nano-objects & nanostructures or between nano-objects & nanostructures and surfaces -Methods of characterization specific of the nano size or adapted for the nano size such as X-ray and neutron scattering, light scattering, NMR, Raman, Plasmonics, near field microscopies, various TEM and SEM techniques, magnetic studies, etc .