Photocatalytic degradation of ampicillin antibiotics in aqueous solution utilizing ZnFe2O4/MWCNTs/TiO2 ternary nanocomposite under solar light irradiation

IF 5.45 Q1 Physics and Astronomy
Davis Varghese , M. Joe Raja Ruban , P. Joselene Suzan Jennifer , D. AnnieCanisius , S. Muthupandi , M. Gladys Joysi , Jijo Francis , J. Madhavan , M. Victor Antony Raj , Saravanan Muthupandian
{"title":"Photocatalytic degradation of ampicillin antibiotics in aqueous solution utilizing ZnFe2O4/MWCNTs/TiO2 ternary nanocomposite under solar light irradiation","authors":"Davis Varghese ,&nbsp;M. Joe Raja Ruban ,&nbsp;P. Joselene Suzan Jennifer ,&nbsp;D. AnnieCanisius ,&nbsp;S. Muthupandi ,&nbsp;M. Gladys Joysi ,&nbsp;Jijo Francis ,&nbsp;J. Madhavan ,&nbsp;M. Victor Antony Raj ,&nbsp;Saravanan Muthupandian","doi":"10.1016/j.nanoso.2024.101389","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, a novel photocatalyst composed of zinc ferrite (ZnFe₂O₄), titanium dioxide (TiO₂), and multi-walled carbon nanotubes (MWCNTs) was successfully synthesized via the hydrothermal method, and evaluated for the degradation of ampicillin (AMP) in aqueous solutions. The synthesized nanocomposites were thoroughly characterized using various analytical techniques, including XRD, HR-SEM, HR-TEM, EDX, UV-Vis, FT-IR, BET, and XPS analysis. Crystallite sizes of 24.18 nm for ZnFe₂O₄ and 17.8 nm for TiO₂ were determined. The composite exhibited a band gap of 1.4 eV, indicating its enhanced photocatalytic activity. The photocatalytic performance was assessed under varying conditions, including different nanocomposite dosages (0.3–1 g/L), AMP concentrations (10–50 mg/L), and pH values (2–12). The optimal AMP degradation efficiency of 99.2 % was achieved using 0.7 g/L of the photocatalyst, 10 mg/L of AMP, and a pH of 12 under 90 min of solar irradiation. These optimal parameters were then applied to evaluate AMP degradation using ZnFe<sub>2</sub>O<sub>4</sub>, TiO<sub>2</sub>, and ZnFe<sub>2</sub>O<sub>4</sub>/MWCNTs individually, with the degradation rate analyzed using a pseudo-first-order model. The superior photocatalytic efficiency can be primarily attributed to improved charge transfer dynamics and effective electron-hole separation, enabled by the doping of MWCNTs. Hydroxyl radicals (OH<sup>•</sup>) were identified as the primary reactive species responsible for AMP degradation. Furthermore, the catalyst retained 91 % of its photocatalytic efficiency after eight consecutive cycles, demonstrating excellent stability and reusability. These results underscore the potential of the ZnFe₂O₄/MWCNTs/TiO₂ composite as a highly effective and sustainable photocatalyst for removing pharmaceutical pollutants from aquatic environments.</div></div>","PeriodicalId":397,"journal":{"name":"Nano-Structures & Nano-Objects","volume":"40 ","pages":"Article 101389"},"PeriodicalIF":5.4500,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Structures & Nano-Objects","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352507X24003019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, a novel photocatalyst composed of zinc ferrite (ZnFe₂O₄), titanium dioxide (TiO₂), and multi-walled carbon nanotubes (MWCNTs) was successfully synthesized via the hydrothermal method, and evaluated for the degradation of ampicillin (AMP) in aqueous solutions. The synthesized nanocomposites were thoroughly characterized using various analytical techniques, including XRD, HR-SEM, HR-TEM, EDX, UV-Vis, FT-IR, BET, and XPS analysis. Crystallite sizes of 24.18 nm for ZnFe₂O₄ and 17.8 nm for TiO₂ were determined. The composite exhibited a band gap of 1.4 eV, indicating its enhanced photocatalytic activity. The photocatalytic performance was assessed under varying conditions, including different nanocomposite dosages (0.3–1 g/L), AMP concentrations (10–50 mg/L), and pH values (2–12). The optimal AMP degradation efficiency of 99.2 % was achieved using 0.7 g/L of the photocatalyst, 10 mg/L of AMP, and a pH of 12 under 90 min of solar irradiation. These optimal parameters were then applied to evaluate AMP degradation using ZnFe2O4, TiO2, and ZnFe2O4/MWCNTs individually, with the degradation rate analyzed using a pseudo-first-order model. The superior photocatalytic efficiency can be primarily attributed to improved charge transfer dynamics and effective electron-hole separation, enabled by the doping of MWCNTs. Hydroxyl radicals (OH) were identified as the primary reactive species responsible for AMP degradation. Furthermore, the catalyst retained 91 % of its photocatalytic efficiency after eight consecutive cycles, demonstrating excellent stability and reusability. These results underscore the potential of the ZnFe₂O₄/MWCNTs/TiO₂ composite as a highly effective and sustainable photocatalyst for removing pharmaceutical pollutants from aquatic environments.
在太阳光照射下利用 ZnFe2O4/MWCNTs/TiO2 三元纳米复合材料光催化降解水溶液中的氨苄青霉素抗生素
本研究通过水热法成功合成了一种由锌铁氧体(ZnFe₂O₄)、二氧化钛(TiO₂)和多壁碳纳米管(MWCNTs)组成的新型光催化剂,并对其在水溶液中降解氨苄西林(AMP)的效果进行了评估。利用各种分析技术,包括 XRD、HR-SEM、HR-TEM、EDX、UV-Vis、FT-IR、BET 和 XPS 分析,对合成的纳米复合材料进行了全面的表征。经测定,ZnFe₂O₄ 的晶粒大小为 24.18 nm,TiO₂ 的晶粒大小为 17.8 nm。该复合材料的带隙为 1.4 eV,表明其光催化活性增强。光催化性能在不同条件下进行了评估,包括不同的纳米复合材料用量(0.3-1 g/L)、AMP 浓度(10-50 mg/L)和 pH 值(2-12)。光催化剂用量为 0.7 g/L、AMP 浓度为 10 mg/L、pH 值为 12 时,在 90 分钟的太阳辐照下,AMP 的最佳降解效率为 99.2%。然后将这些最佳参数分别用于评估 ZnFe2O4、TiO2 和 ZnFe2O4/MWCNTs 对 AMP 的降解情况,并使用伪一阶模型分析降解速率。卓越的光催化效率主要归功于掺杂 MWCNTs 后电荷转移动力学的改善和有效的电子-空穴分离。羟基自由基(OH-)是导致 AMP 降解的主要反应物。此外,该催化剂在连续八次循环后仍能保持 91% 的光催化效率,显示出卓越的稳定性和可重复使用性。这些结果凸显了 ZnFe₂O₄/MWCNTs/TiO₂ 复合材料作为一种高效、可持续的光催化剂在去除水生环境中的药物污染物方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nano-Structures & Nano-Objects
Nano-Structures & Nano-Objects Physics and Astronomy-Condensed Matter Physics
CiteScore
9.20
自引率
0.00%
发文量
60
审稿时长
22 days
期刊介绍: Nano-Structures & Nano-Objects is a new journal devoted to all aspects of the synthesis and the properties of this new flourishing domain. The journal is devoted to novel architectures at the nano-level with an emphasis on new synthesis and characterization methods. The journal is focused on the objects rather than on their applications. However, the research for new applications of original nano-structures & nano-objects in various fields such as nano-electronics, energy conversion, catalysis, drug delivery and nano-medicine is also welcome. The scope of Nano-Structures & Nano-Objects involves: -Metal and alloy nanoparticles with complex nanostructures such as shape control, core-shell and dumbells -Oxide nanoparticles and nanostructures, with complex oxide/metal, oxide/surface and oxide /organic interfaces -Inorganic semi-conducting nanoparticles (quantum dots) with an emphasis on new phases, structures, shapes and complexity -Nanostructures involving molecular inorganic species such as nanoparticles of coordination compounds, molecular magnets, spin transition nanoparticles etc. or organic nano-objects, in particular for molecular electronics -Nanostructured materials such as nano-MOFs and nano-zeolites -Hetero-junctions between molecules and nano-objects, between different nano-objects & nanostructures or between nano-objects & nanostructures and surfaces -Methods of characterization specific of the nano size or adapted for the nano size such as X-ray and neutron scattering, light scattering, NMR, Raman, Plasmonics, near field microscopies, various TEM and SEM techniques, magnetic studies, etc .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信