{"title":"Chemical vapor deposition growth of large-area molybdenum disulphide (MoS2) dendrites","authors":"Mahima Tyagi , Aman Abhishek Tiwari , Srijata Dey , Deshdeep Sahdev","doi":"10.1016/j.nanoso.2024.101380","DOIUrl":null,"url":null,"abstract":"<div><div>Molybdenum disulphide (MoS<sub>2</sub>) has emerged as a popular transition metal dichalcogenide (TMDC) in the recent decade because of its potential applications in electronic devices, optoelectronics, and fuel cells. Specifically, dendritic MoS<sub>2</sub> has been shown to efficiently catalyse various hydrogen evolution reactions. We report the growth of dendritic MoS<sub>2</sub> flakes on SiO<sub>2</sub>/Si wafers using a sophisticated atmospheric pressure chemical vapor deposition (APCVD) system. High-resolution optical microscopy reveals a morphology comprising different star-shaped dendrites, in addition to large MoS<sub>2</sub> domains, which merge to form a continuous film. Our observations reveal that the dendrites originate from the nucleation centre of a monolayer MoS<sub>2</sub> island, and their branches develop preferentially along the grain boundaries of this island. Raman spectroscopy, Atomic force microscopy (AFM), Field emission scanning electron microscopy (FESEM), and X-ray photoelectron spectroscopy (XPS) measurements were carried out to characterize the as-grown MoS<sub>2</sub> dendrites and further confirm these observations.</div></div>","PeriodicalId":397,"journal":{"name":"Nano-Structures & Nano-Objects","volume":"40 ","pages":"Article 101380"},"PeriodicalIF":5.4500,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Structures & Nano-Objects","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352507X24002920","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
Molybdenum disulphide (MoS2) has emerged as a popular transition metal dichalcogenide (TMDC) in the recent decade because of its potential applications in electronic devices, optoelectronics, and fuel cells. Specifically, dendritic MoS2 has been shown to efficiently catalyse various hydrogen evolution reactions. We report the growth of dendritic MoS2 flakes on SiO2/Si wafers using a sophisticated atmospheric pressure chemical vapor deposition (APCVD) system. High-resolution optical microscopy reveals a morphology comprising different star-shaped dendrites, in addition to large MoS2 domains, which merge to form a continuous film. Our observations reveal that the dendrites originate from the nucleation centre of a monolayer MoS2 island, and their branches develop preferentially along the grain boundaries of this island. Raman spectroscopy, Atomic force microscopy (AFM), Field emission scanning electron microscopy (FESEM), and X-ray photoelectron spectroscopy (XPS) measurements were carried out to characterize the as-grown MoS2 dendrites and further confirm these observations.
期刊介绍:
Nano-Structures & Nano-Objects is a new journal devoted to all aspects of the synthesis and the properties of this new flourishing domain. The journal is devoted to novel architectures at the nano-level with an emphasis on new synthesis and characterization methods. The journal is focused on the objects rather than on their applications. However, the research for new applications of original nano-structures & nano-objects in various fields such as nano-electronics, energy conversion, catalysis, drug delivery and nano-medicine is also welcome. The scope of Nano-Structures & Nano-Objects involves: -Metal and alloy nanoparticles with complex nanostructures such as shape control, core-shell and dumbells -Oxide nanoparticles and nanostructures, with complex oxide/metal, oxide/surface and oxide /organic interfaces -Inorganic semi-conducting nanoparticles (quantum dots) with an emphasis on new phases, structures, shapes and complexity -Nanostructures involving molecular inorganic species such as nanoparticles of coordination compounds, molecular magnets, spin transition nanoparticles etc. or organic nano-objects, in particular for molecular electronics -Nanostructured materials such as nano-MOFs and nano-zeolites -Hetero-junctions between molecules and nano-objects, between different nano-objects & nanostructures or between nano-objects & nanostructures and surfaces -Methods of characterization specific of the nano size or adapted for the nano size such as X-ray and neutron scattering, light scattering, NMR, Raman, Plasmonics, near field microscopies, various TEM and SEM techniques, magnetic studies, etc .