Kai SUN , Lin WANG , Hang SU , Jia-yi GENG , Qiang ZHANG , Bo MENG , Zeng-yan WEI , Gao-hui WU
{"title":"Damping properties and mechanism of aluminum matrix composites reinforced with glass cenospheres","authors":"Kai SUN , Lin WANG , Hang SU , Jia-yi GENG , Qiang ZHANG , Bo MENG , Zeng-yan WEI , Gao-hui WU","doi":"10.1016/S1003-6326(24)66573-8","DOIUrl":null,"url":null,"abstract":"<div><div>The damping properties were improved by preparing Al matrix composites reinforced with glass cenospheres through the pressure infiltration method. Transmission electron microscopy and scanning electron microscopy were employed to characterize the microstructure of the composites. The low-frequency damping properties were examined by using a dynamic mechanical thermal analyzer, aiming at exploring the changing trend of damping capacity with strain, temperature, and frequency. The findings demonstrated that the damping value rose as temperature and strain increased, with a maximum value of 0.15. Additionally, the damping value decreased when the frequency increased. Dislocation damping under strain and interfacial damping under temperature served as the two primary damping mechanisms. The increase in the density of dislocation strong pinning points following heat treatment reduced the damping value, which was attributed to the heat treatment enhancement of the interfacial bonding force of the composites.</div></div>","PeriodicalId":23191,"journal":{"name":"Transactions of Nonferrous Metals Society of China","volume":"34 9","pages":"Pages 2743-2755"},"PeriodicalIF":4.7000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of Nonferrous Metals Society of China","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1003632624665738","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
The damping properties were improved by preparing Al matrix composites reinforced with glass cenospheres through the pressure infiltration method. Transmission electron microscopy and scanning electron microscopy were employed to characterize the microstructure of the composites. The low-frequency damping properties were examined by using a dynamic mechanical thermal analyzer, aiming at exploring the changing trend of damping capacity with strain, temperature, and frequency. The findings demonstrated that the damping value rose as temperature and strain increased, with a maximum value of 0.15. Additionally, the damping value decreased when the frequency increased. Dislocation damping under strain and interfacial damping under temperature served as the two primary damping mechanisms. The increase in the density of dislocation strong pinning points following heat treatment reduced the damping value, which was attributed to the heat treatment enhancement of the interfacial bonding force of the composites.
期刊介绍:
The Transactions of Nonferrous Metals Society of China (Trans. Nonferrous Met. Soc. China), founded in 1991 and sponsored by The Nonferrous Metals Society of China, is published monthly now and mainly contains reports of original research which reflect the new progresses in the field of nonferrous metals science and technology, including mineral processing, extraction metallurgy, metallic materials and heat treatments, metal working, physical metallurgy, powder metallurgy, with the emphasis on fundamental science. It is the unique preeminent publication in English for scientists, engineers, under/post-graduates on the field of nonferrous metals industry. This journal is covered by many famous abstract/index systems and databases such as SCI Expanded, Ei Compendex Plus, INSPEC, CA, METADEX, AJ and JICST.