Peng-ze LI , Yu ZHANG , Jia-zheng ZHANG , Lin LIU , Shi-yi WANG , Rui LIU , Ye SONG , Xu-fei ZHU
{"title":"Formation mechanism of nanopores in dense films of anodic alumina","authors":"Peng-ze LI , Yu ZHANG , Jia-zheng ZHANG , Lin LIU , Shi-yi WANG , Rui LIU , Ye SONG , Xu-fei ZHU","doi":"10.1016/S1003-6326(24)66585-4","DOIUrl":null,"url":null,"abstract":"<div><div>Constant-current anodization of pure aluminum was carried out in non-corrosive capacitor working electrolytes to study the formation mechanism of nanopores in the anodic oxide films. Through comparative experiments, nanopores are found in the anodic films formed in the electrolytes after high-temperature storage (HTS) at 130 °C for 240 h. A comparison of the voltage−time curves suggests that the formation of nanopores results from the decrease in formation efficiency of anodic oxide films rather than the corrosion of the electrolytes. FT-IR and UV spectra analysis shows that carboxylate and ethylene glycol in electrolytes can easily react by esterification at high temperatures. Combining the electronic current theory and oxygen bubble mold effect, the change in electrolyte composition could increase the electronic current in the anodizing process. The electronic current decreases the formation efficiency of anodic oxide films, and oxygen bubbles accompanying electronic current lead to the formation of nanopores in the dense films. The continuous electronic current and oxygen bubbles are the prerequisites for the formation of porous anodic oxides rather than the traditional field-assisted dissolution model.</div></div>","PeriodicalId":23191,"journal":{"name":"Transactions of Nonferrous Metals Society of China","volume":"34 9","pages":"Pages 2918-2927"},"PeriodicalIF":4.7000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of Nonferrous Metals Society of China","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1003632624665854","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Constant-current anodization of pure aluminum was carried out in non-corrosive capacitor working electrolytes to study the formation mechanism of nanopores in the anodic oxide films. Through comparative experiments, nanopores are found in the anodic films formed in the electrolytes after high-temperature storage (HTS) at 130 °C for 240 h. A comparison of the voltage−time curves suggests that the formation of nanopores results from the decrease in formation efficiency of anodic oxide films rather than the corrosion of the electrolytes. FT-IR and UV spectra analysis shows that carboxylate and ethylene glycol in electrolytes can easily react by esterification at high temperatures. Combining the electronic current theory and oxygen bubble mold effect, the change in electrolyte composition could increase the electronic current in the anodizing process. The electronic current decreases the formation efficiency of anodic oxide films, and oxygen bubbles accompanying electronic current lead to the formation of nanopores in the dense films. The continuous electronic current and oxygen bubbles are the prerequisites for the formation of porous anodic oxides rather than the traditional field-assisted dissolution model.
期刊介绍:
The Transactions of Nonferrous Metals Society of China (Trans. Nonferrous Met. Soc. China), founded in 1991 and sponsored by The Nonferrous Metals Society of China, is published monthly now and mainly contains reports of original research which reflect the new progresses in the field of nonferrous metals science and technology, including mineral processing, extraction metallurgy, metallic materials and heat treatments, metal working, physical metallurgy, powder metallurgy, with the emphasis on fundamental science. It is the unique preeminent publication in English for scientists, engineers, under/post-graduates on the field of nonferrous metals industry. This journal is covered by many famous abstract/index systems and databases such as SCI Expanded, Ei Compendex Plus, INSPEC, CA, METADEX, AJ and JICST.