Construction of global IGS-3D electron density (Ne) model by deep learning

IF 1.8 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS
Eun-Young Ji , Yong-Jae Moon , Young-Sil Kwak , Kangwoo Yi , Jeong-Heon Kim
{"title":"Construction of global IGS-3D electron density (Ne) model by deep learning","authors":"Eun-Young Ji ,&nbsp;Yong-Jae Moon ,&nbsp;Young-Sil Kwak ,&nbsp;Kangwoo Yi ,&nbsp;Jeong-Heon Kim","doi":"10.1016/j.jastp.2024.106370","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we construct a global IGS-3D <em>N</em><sub><em>e</em></sub> model that generates global 3-D electron density (<em>N</em><sub><em>e</em></sub>) from International Global Navigation Satellite Systems (GNSS) Service (IGS) total electron content (TEC) data through deep learning. As a first step towards this, we make a model to generate a vertical electron density profile from a TEC value using Multi-Layer Perceptron (MLP). In this process, we use the vertical electron density profiles and the corresponding TEC values of the IRI-2016 model from 2001 to 2008 for training, 2009 and 2014 for validation, and 2010 to 2013 for a test. The next step is to generate global IGS electron density profiles using the global IGS TECs as input data for the model, which is called the global IGS-3D <em>N</em><sub><em>e</em></sub> model. We evaluate the IGS-3D <em>N</em><sub><em>e</em></sub> model by comparing the electron density profiles from the incoherent scatter radars (ISRs) at three stations with the IGS-3D <em>N</em><sub><em>e</em></sub> model from 2010 to 2013. The evaluation shows that the electron density profiles from the IGS-3D <em>N</em><sub><em>e</em></sub> model are closer to the ISR data than those of the IRI model, especially at high latitudes. The IGS-3D <em>N</em><sub><em>e</em></sub> model shows that the averaged root mean square error (RMSE) values between IGS and ISR electron density profiles are 0.37 log(m<sup>−3</sup>), 0.22 log(m<sup>−3</sup>), and 0.34 log(m<sup>−3</sup>) for all test datasets at Jicamarca, Millstone Hill, and EISCAT stations, respectively. These results suggest that our method has sufficient potential to enhance the ability to predict global electron density profiles.</div></div>","PeriodicalId":15096,"journal":{"name":"Journal of Atmospheric and Solar-Terrestrial Physics","volume":"265 ","pages":"Article 106370"},"PeriodicalIF":1.8000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Atmospheric and Solar-Terrestrial Physics","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364682624001986","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we construct a global IGS-3D Ne model that generates global 3-D electron density (Ne) from International Global Navigation Satellite Systems (GNSS) Service (IGS) total electron content (TEC) data through deep learning. As a first step towards this, we make a model to generate a vertical electron density profile from a TEC value using Multi-Layer Perceptron (MLP). In this process, we use the vertical electron density profiles and the corresponding TEC values of the IRI-2016 model from 2001 to 2008 for training, 2009 and 2014 for validation, and 2010 to 2013 for a test. The next step is to generate global IGS electron density profiles using the global IGS TECs as input data for the model, which is called the global IGS-3D Ne model. We evaluate the IGS-3D Ne model by comparing the electron density profiles from the incoherent scatter radars (ISRs) at three stations with the IGS-3D Ne model from 2010 to 2013. The evaluation shows that the electron density profiles from the IGS-3D Ne model are closer to the ISR data than those of the IRI model, especially at high latitudes. The IGS-3D Ne model shows that the averaged root mean square error (RMSE) values between IGS and ISR electron density profiles are 0.37 log(m−3), 0.22 log(m−3), and 0.34 log(m−3) for all test datasets at Jicamarca, Millstone Hill, and EISCAT stations, respectively. These results suggest that our method has sufficient potential to enhance the ability to predict global electron density profiles.
通过深度学习构建全球 IGS-3D 电子密度(Ne)模型
在本研究中,我们构建了一个全球 IGS-3D Ne 模型,通过深度学习从国际全球导航卫星系统(GNSS)服务(IGS)总电子含量(TEC)数据生成全球三维电子密度(Ne)。作为实现这一目标的第一步,我们利用多层感知器(MLP)建立了一个模型,从 TEC 值生成垂直电子密度剖面。在此过程中,我们使用 2001 年至 2008 年 IRI-2016 模型的垂直电子密度剖面和相应的 TEC 值作为训练,2009 年和 2014 年作为验证,2010 年至 2013 年作为测试。下一步是利用全球IGS TEC值作为模型的输入数据,生成全球IGS电子密度剖面,这就是全球IGS-3D Ne模型。我们通过比较2010年至2013年三个站点非相干散射雷达(ISR)的电子密度剖面与IGS-3D Ne模型,对IGS-3D Ne模型进行了评估。评估结果表明,IGS-3D Ne模式的电子密度剖面比IRI模式更接近ISR数据,尤其是在高纬度地区。IGS-3D Ne模型显示,在Jicamarca、Millstone Hill和EISCAT站点的所有测试数据集上,IGS和ISR电子密度剖面的平均均方根误差(RMSE)值分别为0.37 log(m-3)、0.22 log(m-3)和0.34 log(m-3)。这些结果表明,我们的方法有足够的潜力来提高预测全球电子密度剖面的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Atmospheric and Solar-Terrestrial Physics
Journal of Atmospheric and Solar-Terrestrial Physics 地学-地球化学与地球物理
CiteScore
4.10
自引率
5.30%
发文量
95
审稿时长
6 months
期刊介绍: The Journal of Atmospheric and Solar-Terrestrial Physics (JASTP) is an international journal concerned with the inter-disciplinary science of the Earth''s atmospheric and space environment, especially the highly varied and highly variable physical phenomena that occur in this natural laboratory and the processes that couple them. The journal covers the physical processes operating in the troposphere, stratosphere, mesosphere, thermosphere, ionosphere, magnetosphere, the Sun, interplanetary medium, and heliosphere. Phenomena occurring in other "spheres", solar influences on climate, and supporting laboratory measurements are also considered. The journal deals especially with the coupling between the different regions. Solar flares, coronal mass ejections, and other energetic events on the Sun create interesting and important perturbations in the near-Earth space environment. The physics of such "space weather" is central to the Journal of Atmospheric and Solar-Terrestrial Physics and the journal welcomes papers that lead in the direction of a predictive understanding of the coupled system. Regarding the upper atmosphere, the subjects of aeronomy, geomagnetism and geoelectricity, auroral phenomena, radio wave propagation, and plasma instabilities, are examples within the broad field of solar-terrestrial physics which emphasise the energy exchange between the solar wind, the magnetospheric and ionospheric plasmas, and the neutral gas. In the lower atmosphere, topics covered range from mesoscale to global scale dynamics, to atmospheric electricity, lightning and its effects, and to anthropogenic changes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信