{"title":"Strength and plasticity improvement induced by strong grain refinement after Zr alloying in selective laser-melted AlSiMg1.4 alloy","authors":"Yao-xiang GENG , Chun-feng ZAI , Jiang YU , Hao TANG , Hong-wei LÜ , Zhi-jie ZHANG","doi":"10.1016/S1003-6326(24)66572-6","DOIUrl":null,"url":null,"abstract":"<div><div>In order to enhance the mechanical properties of the selective laser-melted (SLM) high-Mg content AlSiMg1.4 alloy, the Zr element was introduced. The influence of Zr alloying on the processability, microstructure, and mechanical properties of the alloy was systematically investigated through performing microstructure analysis and tensile testing. It was demonstrated that the SLM-fabricated AlSiMg1.4−Zr alloy exhibited high process stability with a relative density of over 99.5% at various process parameters. Besides, the strong grain refinement induced by the primary Al<sub>3</sub>Zr particle during the melt solidification process simultaneously enhanced both the strength and plasticity of the alloy. The values for the yield strength, ultimate tensile strength, and elongation of the SLM-fabricated AlSiMg1.4−Zr were (343±3) MPa, (485±4) MPa, and (10.2±0.2)%, respectively, demonstrating good strength− plasticity synergy in comparison to the AlSiMg1.4 and other Al−Si-based alloys fabricated by SLM.</div></div>","PeriodicalId":23191,"journal":{"name":"Transactions of Nonferrous Metals Society of China","volume":"34 9","pages":"Pages 2733-2742"},"PeriodicalIF":4.7000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of Nonferrous Metals Society of China","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1003632624665726","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
In order to enhance the mechanical properties of the selective laser-melted (SLM) high-Mg content AlSiMg1.4 alloy, the Zr element was introduced. The influence of Zr alloying on the processability, microstructure, and mechanical properties of the alloy was systematically investigated through performing microstructure analysis and tensile testing. It was demonstrated that the SLM-fabricated AlSiMg1.4−Zr alloy exhibited high process stability with a relative density of over 99.5% at various process parameters. Besides, the strong grain refinement induced by the primary Al3Zr particle during the melt solidification process simultaneously enhanced both the strength and plasticity of the alloy. The values for the yield strength, ultimate tensile strength, and elongation of the SLM-fabricated AlSiMg1.4−Zr were (343±3) MPa, (485±4) MPa, and (10.2±0.2)%, respectively, demonstrating good strength− plasticity synergy in comparison to the AlSiMg1.4 and other Al−Si-based alloys fabricated by SLM.
期刊介绍:
The Transactions of Nonferrous Metals Society of China (Trans. Nonferrous Met. Soc. China), founded in 1991 and sponsored by The Nonferrous Metals Society of China, is published monthly now and mainly contains reports of original research which reflect the new progresses in the field of nonferrous metals science and technology, including mineral processing, extraction metallurgy, metallic materials and heat treatments, metal working, physical metallurgy, powder metallurgy, with the emphasis on fundamental science. It is the unique preeminent publication in English for scientists, engineers, under/post-graduates on the field of nonferrous metals industry. This journal is covered by many famous abstract/index systems and databases such as SCI Expanded, Ei Compendex Plus, INSPEC, CA, METADEX, AJ and JICST.