Rapid detection and risk assessment of soil contamination at lead smelting site based on machine learning

IF 4.7 1区 材料科学 Q1 METALLURGY & METALLURGICAL ENGINEERING
Sheng-guo XUE , Jing-pei FENG , Wen-shun KE , Mu LI , Kun-yan QIU , Chu-xuan LI , Chuan WU , Lin GUO
{"title":"Rapid detection and risk assessment of soil contamination at lead smelting site based on machine learning","authors":"Sheng-guo XUE ,&nbsp;Jing-pei FENG ,&nbsp;Wen-shun KE ,&nbsp;Mu LI ,&nbsp;Kun-yan QIU ,&nbsp;Chu-xuan LI ,&nbsp;Chuan WU ,&nbsp;Lin GUO","doi":"10.1016/S1003-6326(24)66595-7","DOIUrl":null,"url":null,"abstract":"<div><div>A general prediction model for seven heavy metals was established using the heavy metal contents of 207 soil samples measured by a portable X-ray fluorescence spectrometer (XRF) and six environmental factors as model correction coefficients. The eXtreme Gradient Boosting (XGBoost) model was used to fit the relationship between the content of heavy metals and environment characteristics to evaluate the soil ecological risk of the smelting site. The results demonstrated that the generalized prediction model developed for Pb, Cd, and As was highly accurate with fitted coefficients (<em>R</em><sup>2</sup>) values of 0.911, 0.950, and 0.835, respectively. Topsoil presented the highest ecological risk, and there existed high potential ecological risk at some positions with different depths due to high mobility of Cd. Generally, the application of machine learning significantly increased the accuracy of pXRF measurements, and identified key environmental factors. The adapted potential ecological risk assessment emphasized the need to focus on Pb, Cd, and As in future site remediation efforts.</div></div>","PeriodicalId":23191,"journal":{"name":"Transactions of Nonferrous Metals Society of China","volume":"34 9","pages":"Pages 3054-3068"},"PeriodicalIF":4.7000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of Nonferrous Metals Society of China","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1003632624665957","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

A general prediction model for seven heavy metals was established using the heavy metal contents of 207 soil samples measured by a portable X-ray fluorescence spectrometer (XRF) and six environmental factors as model correction coefficients. The eXtreme Gradient Boosting (XGBoost) model was used to fit the relationship between the content of heavy metals and environment characteristics to evaluate the soil ecological risk of the smelting site. The results demonstrated that the generalized prediction model developed for Pb, Cd, and As was highly accurate with fitted coefficients (R2) values of 0.911, 0.950, and 0.835, respectively. Topsoil presented the highest ecological risk, and there existed high potential ecological risk at some positions with different depths due to high mobility of Cd. Generally, the application of machine learning significantly increased the accuracy of pXRF measurements, and identified key environmental factors. The adapted potential ecological risk assessment emphasized the need to focus on Pb, Cd, and As in future site remediation efforts.
基于机器学习的铅冶炼厂土壤污染快速检测与风险评估
利用便携式 X 射线荧光光谱仪(XRF)测量了 207 个土壤样本的重金属含量,并将六个环境因素作为模型修正系数,建立了七种重金属的一般预测模型。采用极端梯度提升(XGBoost)模型拟合重金属含量与环境特征之间的关系,以评估冶炼场地的土壤生态风险。结果表明,针对铅、镉和砷建立的广义预测模型准确度很高,拟合系数(R2)分别为 0.911、0.950 和 0.835。表层土的生态风险最高,由于镉的高流动性,在一些不同深度的位置存在较高的潜在生态风险。总体而言,机器学习的应用大大提高了 pXRF 测量的准确性,并确定了关键的环境因素。经过调整的潜在生态风险评估强调了在未来的场地修复工作中重点关注铅、镉和砷的必要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.40
自引率
17.80%
发文量
8456
审稿时长
3.6 months
期刊介绍: The Transactions of Nonferrous Metals Society of China (Trans. Nonferrous Met. Soc. China), founded in 1991 and sponsored by The Nonferrous Metals Society of China, is published monthly now and mainly contains reports of original research which reflect the new progresses in the field of nonferrous metals science and technology, including mineral processing, extraction metallurgy, metallic materials and heat treatments, metal working, physical metallurgy, powder metallurgy, with the emphasis on fundamental science. It is the unique preeminent publication in English for scientists, engineers, under/post-graduates on the field of nonferrous metals industry. This journal is covered by many famous abstract/index systems and databases such as SCI Expanded, Ei Compendex Plus, INSPEC, CA, METADEX, AJ and JICST.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信