Synergistic effects of liquid phase sintering and B-site substitution to enhance proton conductivity of BaZr0.1Ce0.7Y0.1Yb0.1O3-δ for protonic ceramic fuel cell
Kai Li , Yan Liang , Jing Zhang , Binbin Yu , Lichao Jia
{"title":"Synergistic effects of liquid phase sintering and B-site substitution to enhance proton conductivity of BaZr0.1Ce0.7Y0.1Yb0.1O3-δ for protonic ceramic fuel cell","authors":"Kai Li , Yan Liang , Jing Zhang , Binbin Yu , Lichao Jia","doi":"10.1016/j.ijhydene.2024.10.165","DOIUrl":null,"url":null,"abstract":"<div><div>This paper is dedicated to improving the sintering and conductivity of BaZr<sub>0.1</sub>Ce<sub>0.7</sub>Y<sub>0.1</sub>Yb<sub>0.1</sub>O<sub>3-δ</sub> (BZCYYb) by adding ZnO–CuO dual-sintering aids. The synergistic effects of liquid-sintering of Zn and B-site substitution of Cu on the sinterability and proton conductivity of BZCYYb are systematically investigated. X-ray diffraction (XRD) analysis of BZCYYb after addition of ZnO–CuO (BZCYYb-Zn-Cu) confirms the complete perovskite phase formation without any secondary phase. The substitution of Ce<sup>4+</sup> (0.87 Å) with Zn<sup>2+</sup> (0.74 Å) or Cu<sup>2+</sup> (0.73 Å) induces a shift in XRD diffraction peak to higher angle due to a decrease in lattice constant. Energy dispersive X-ray spectroscopy analysis indicate a distinct distribution of Zn primarily at the grain boundaries, while Cu is predominantly located within the grains of BZCYYb-Zn-Cu. The addition of ZnO–CuO into BZCYYb results in a denser microstructure with larger average grain size. Furthermore, the substitution of Ce<sup>4+</sup> by Cu<sup>2+</sup> increases the concentration of oxygen vacancies and reduces activation energy. For BZCYYb-Zn-Cu, the proton conductivity reaches 4.52 × 10<sup>−2</sup> S/cm at 750 °C, approximately 3 times higher than that of BZCYYb. This enhancement can be attributed to the synergistic effects of larger average grain size resulting from liquid phase sintering of Zn, low active energy, and high concentration of oxygen vacancies arising from Cu B-site substitution. BZCYYb-Zn-Cu is used as the electrolyte for anode support SOFC, and the single cell exhibits remarkable electrochemical performance and excellent stability in H<sub>2</sub> fuel. This research establishes a crucial theoretical foundation for the preparation and performance evaluation for large-size protonic ceramic cell.</div></div>","PeriodicalId":337,"journal":{"name":"International Journal of Hydrogen Energy","volume":"91 ","pages":"Pages 858-866"},"PeriodicalIF":8.3000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Hydrogen Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360319924043635","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This paper is dedicated to improving the sintering and conductivity of BaZr0.1Ce0.7Y0.1Yb0.1O3-δ (BZCYYb) by adding ZnO–CuO dual-sintering aids. The synergistic effects of liquid-sintering of Zn and B-site substitution of Cu on the sinterability and proton conductivity of BZCYYb are systematically investigated. X-ray diffraction (XRD) analysis of BZCYYb after addition of ZnO–CuO (BZCYYb-Zn-Cu) confirms the complete perovskite phase formation without any secondary phase. The substitution of Ce4+ (0.87 Å) with Zn2+ (0.74 Å) or Cu2+ (0.73 Å) induces a shift in XRD diffraction peak to higher angle due to a decrease in lattice constant. Energy dispersive X-ray spectroscopy analysis indicate a distinct distribution of Zn primarily at the grain boundaries, while Cu is predominantly located within the grains of BZCYYb-Zn-Cu. The addition of ZnO–CuO into BZCYYb results in a denser microstructure with larger average grain size. Furthermore, the substitution of Ce4+ by Cu2+ increases the concentration of oxygen vacancies and reduces activation energy. For BZCYYb-Zn-Cu, the proton conductivity reaches 4.52 × 10−2 S/cm at 750 °C, approximately 3 times higher than that of BZCYYb. This enhancement can be attributed to the synergistic effects of larger average grain size resulting from liquid phase sintering of Zn, low active energy, and high concentration of oxygen vacancies arising from Cu B-site substitution. BZCYYb-Zn-Cu is used as the electrolyte for anode support SOFC, and the single cell exhibits remarkable electrochemical performance and excellent stability in H2 fuel. This research establishes a crucial theoretical foundation for the preparation and performance evaluation for large-size protonic ceramic cell.
期刊介绍:
The objective of the International Journal of Hydrogen Energy is to facilitate the exchange of new ideas, technological advancements, and research findings in the field of Hydrogen Energy among scientists and engineers worldwide. This journal showcases original research, both analytical and experimental, covering various aspects of Hydrogen Energy. These include production, storage, transmission, utilization, enabling technologies, environmental impact, economic considerations, and global perspectives on hydrogen and its carriers such as NH3, CH4, alcohols, etc.
The utilization aspect encompasses various methods such as thermochemical (combustion), photochemical, electrochemical (fuel cells), and nuclear conversion of hydrogen, hydrogen isotopes, and hydrogen carriers into thermal, mechanical, and electrical energies. The applications of these energies can be found in transportation (including aerospace), industrial, commercial, and residential sectors.