{"title":"More limit cycles for complex differential equations with three monomials","authors":"M.J. Álvarez , B. Coll , A. Gasull , R. Prohens","doi":"10.1016/j.jde.2024.10.013","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper we improve, by almost doubling, the existing lower bound for the number of limit cycles of the family of complex differential equations with three monomials, <span><math><mover><mrow><mi>z</mi></mrow><mrow><mo>˙</mo></mrow></mover><mo>=</mo><mi>A</mi><msup><mrow><mi>z</mi></mrow><mrow><mi>k</mi></mrow></msup><msup><mrow><mover><mrow><mi>z</mi></mrow><mrow><mo>¯</mo></mrow></mover></mrow><mrow><mi>l</mi></mrow></msup><mo>+</mo><mi>B</mi><msup><mrow><mi>z</mi></mrow><mrow><mi>m</mi></mrow></msup><msup><mrow><mover><mrow><mi>z</mi></mrow><mrow><mo>¯</mo></mrow></mover></mrow><mrow><mi>n</mi></mrow></msup><mo>+</mo><mi>C</mi><msup><mrow><mi>z</mi></mrow><mrow><mi>p</mi></mrow></msup><msup><mrow><mover><mrow><mi>z</mi></mrow><mrow><mo>¯</mo></mrow></mover></mrow><mrow><mi>q</mi></mrow></msup></math></span>, being <span><math><mi>k</mi><mo>,</mo><mi>l</mi><mo>,</mo><mi>m</mi><mo>,</mo><mi>n</mi><mo>,</mo><mi>p</mi><mo>,</mo><mi>q</mi></math></span> non-negative integers and <span><math><mi>A</mi><mo>,</mo><mi>B</mi><mo>,</mo><mi>C</mi><mo>∈</mo><mi>C</mi></math></span>. More concretely, if <span><math><mi>N</mi><mo>=</mo><mi>max</mi><mo></mo><mo>(</mo><mi>k</mi><mo>+</mo><mi>l</mi><mo>,</mo><mi>m</mi><mo>+</mo><mi>n</mi><mo>,</mo><mi>p</mi><mo>+</mo><mi>q</mi><mo>)</mo></math></span> and <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>(</mo><mi>N</mi><mo>)</mo><mo>∈</mo><mi>N</mi><mo>∪</mo><mo>{</mo><mo>∞</mo><mo>}</mo></math></span> denotes the maximum number of limit cycles of the above equations, we show that for <span><math><mi>N</mi><mo>≥</mo><mn>4</mn></math></span>, <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>(</mo><mi>N</mi><mo>)</mo><mo>≥</mo><mi>N</mi><mo>−</mo><mn>3</mn></math></span> and that for some values of <em>N</em> this new lower bound is <span><math><mi>N</mi><mo>+</mo><mn>1</mn></math></span>. We also present examples with many limit cycles and different configurations. Finally, we show that <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>(</mo><mn>2</mn><mo>)</mo><mo>≥</mo><mn>2</mn></math></span> and study in detail the quadratic case with three monomials proving in some of them non-existence, uniqueness or existence of exactly two limit cycles.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039624006636","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper we improve, by almost doubling, the existing lower bound for the number of limit cycles of the family of complex differential equations with three monomials, , being non-negative integers and . More concretely, if and denotes the maximum number of limit cycles of the above equations, we show that for , and that for some values of N this new lower bound is . We also present examples with many limit cycles and different configurations. Finally, we show that and study in detail the quadratic case with three monomials proving in some of them non-existence, uniqueness or existence of exactly two limit cycles.
期刊介绍:
The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools.
Research Areas Include:
• Mathematical control theory
• Ordinary differential equations
• Partial differential equations
• Stochastic differential equations
• Topological dynamics
• Related topics