More limit cycles for complex differential equations with three monomials

IF 2.4 2区 数学 Q1 MATHEMATICS
M.J. Álvarez , B. Coll , A. Gasull , R. Prohens
{"title":"More limit cycles for complex differential equations with three monomials","authors":"M.J. Álvarez ,&nbsp;B. Coll ,&nbsp;A. Gasull ,&nbsp;R. Prohens","doi":"10.1016/j.jde.2024.10.013","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper we improve, by almost doubling, the existing lower bound for the number of limit cycles of the family of complex differential equations with three monomials, <span><math><mover><mrow><mi>z</mi></mrow><mrow><mo>˙</mo></mrow></mover><mo>=</mo><mi>A</mi><msup><mrow><mi>z</mi></mrow><mrow><mi>k</mi></mrow></msup><msup><mrow><mover><mrow><mi>z</mi></mrow><mrow><mo>¯</mo></mrow></mover></mrow><mrow><mi>l</mi></mrow></msup><mo>+</mo><mi>B</mi><msup><mrow><mi>z</mi></mrow><mrow><mi>m</mi></mrow></msup><msup><mrow><mover><mrow><mi>z</mi></mrow><mrow><mo>¯</mo></mrow></mover></mrow><mrow><mi>n</mi></mrow></msup><mo>+</mo><mi>C</mi><msup><mrow><mi>z</mi></mrow><mrow><mi>p</mi></mrow></msup><msup><mrow><mover><mrow><mi>z</mi></mrow><mrow><mo>¯</mo></mrow></mover></mrow><mrow><mi>q</mi></mrow></msup></math></span>, being <span><math><mi>k</mi><mo>,</mo><mi>l</mi><mo>,</mo><mi>m</mi><mo>,</mo><mi>n</mi><mo>,</mo><mi>p</mi><mo>,</mo><mi>q</mi></math></span> non-negative integers and <span><math><mi>A</mi><mo>,</mo><mi>B</mi><mo>,</mo><mi>C</mi><mo>∈</mo><mi>C</mi></math></span>. More concretely, if <span><math><mi>N</mi><mo>=</mo><mi>max</mi><mo>⁡</mo><mo>(</mo><mi>k</mi><mo>+</mo><mi>l</mi><mo>,</mo><mi>m</mi><mo>+</mo><mi>n</mi><mo>,</mo><mi>p</mi><mo>+</mo><mi>q</mi><mo>)</mo></math></span> and <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>(</mo><mi>N</mi><mo>)</mo><mo>∈</mo><mi>N</mi><mo>∪</mo><mo>{</mo><mo>∞</mo><mo>}</mo></math></span> denotes the maximum number of limit cycles of the above equations, we show that for <span><math><mi>N</mi><mo>≥</mo><mn>4</mn></math></span>, <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>(</mo><mi>N</mi><mo>)</mo><mo>≥</mo><mi>N</mi><mo>−</mo><mn>3</mn></math></span> and that for some values of <em>N</em> this new lower bound is <span><math><mi>N</mi><mo>+</mo><mn>1</mn></math></span>. We also present examples with many limit cycles and different configurations. Finally, we show that <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>(</mo><mn>2</mn><mo>)</mo><mo>≥</mo><mn>2</mn></math></span> and study in detail the quadratic case with three monomials proving in some of them non-existence, uniqueness or existence of exactly two limit cycles.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039624006636","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we improve, by almost doubling, the existing lower bound for the number of limit cycles of the family of complex differential equations with three monomials, z˙=Azkz¯l+Bzmz¯n+Czpz¯q, being k,l,m,n,p,q non-negative integers and A,B,CC. More concretely, if N=max(k+l,m+n,p+q) and H3(N)N{} denotes the maximum number of limit cycles of the above equations, we show that for N4, H3(N)N3 and that for some values of N this new lower bound is N+1. We also present examples with many limit cycles and different configurations. Finally, we show that H3(2)2 and study in detail the quadratic case with three monomials proving in some of them non-existence, uniqueness or existence of exactly two limit cycles.
有三个单项式的复微分方程的更多极限循环
在本文中,我们改进了复微分方程族中三个单项式 z˙=Azkz¯l+Bzmz¯n+Czpz¯q 的极限循环数的现有下界,几乎翻了一番,k,l,m,n,p,q 为非负整数,A,B,C∈C。更具体地说,如果 N=max(k+l,m+n,p+q),H3(N)∈N∪{∞} 表示上述方程的最大极限循环数,我们将证明对于 N≥4 时,H3(N)≥N-3,并且对于某些 N 值,这一新的下界是 N+1。我们还举例说明了许多极限循环和不同配置。最后,我们证明了 H3(2)≥2,并详细研究了有三个单项式的二次情况,证明了其中某些情况下两个极限循环不存在、唯一或存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信