The growth mechanism of boundary layers for the 2D Navier-Stokes equations

IF 2.4 2区 数学 Q1 MATHEMATICS
Fei Wang , Yichun Zhu
{"title":"The growth mechanism of boundary layers for the 2D Navier-Stokes equations","authors":"Fei Wang ,&nbsp;Yichun Zhu","doi":"10.1016/j.jde.2024.10.012","DOIUrl":null,"url":null,"abstract":"<div><div>We give a detailed description of formation of the boundary layers in the inviscid limit problem. To be more specific, we prove that the magnitude of the vorticity near the boundary is growing to the size of <span><math><mn>1</mn><mo>/</mo><msqrt><mrow><mi>ν</mi></mrow></msqrt></math></span> and the width of the layer is spreading out to be proportional the <span><math><msqrt><mrow><mi>ν</mi></mrow></msqrt></math></span> in a finite time period. In fact, the growth time scaling is almost <em>ν</em>.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"416 ","pages":"Pages 973-1014"},"PeriodicalIF":2.4000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039624006612","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We give a detailed description of formation of the boundary layers in the inviscid limit problem. To be more specific, we prove that the magnitude of the vorticity near the boundary is growing to the size of 1/ν and the width of the layer is spreading out to be proportional the ν in a finite time period. In fact, the growth time scaling is almost ν.
二维纳维-斯托克斯方程的边界层生长机制
我们详细描述了不粘性极限问题中边界层的形成。更具体地说,我们证明了边界附近涡度的大小在有限时间内增长到 1/ν,而层的宽度在有限时间内扩展到与ν成正比。事实上,增长时间尺度几乎为 ν。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信