Sequential stability of weak martingale solutions to stochastic compressible Navier-Stokes equations with viscosity vanishing on vacuum

IF 2.4 2区 数学 Q1 MATHEMATICS
Zdzisław Brzeźniak , Gaurav Dhariwal , Ewelina Zatorska
{"title":"Sequential stability of weak martingale solutions to stochastic compressible Navier-Stokes equations with viscosity vanishing on vacuum","authors":"Zdzisław Brzeźniak ,&nbsp;Gaurav Dhariwal ,&nbsp;Ewelina Zatorska","doi":"10.1016/j.jde.2024.10.016","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we investigate the compressible Navier-Stokes equations with degenerate, density-dependent, viscosity coefficient driven by multiplicative stochastic noise. We consider three-dimensional periodic domain and prove that the family of weak martingale solutions is sequentially compact.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002203962400665X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we investigate the compressible Navier-Stokes equations with degenerate, density-dependent, viscosity coefficient driven by multiplicative stochastic noise. We consider three-dimensional periodic domain and prove that the family of weak martingale solutions is sequentially compact.
真空上粘度消失的随机可压缩纳维-斯托克斯方程弱鞅解的连续稳定性
在本文中,我们研究了由乘法随机噪声驱动的可压缩纳维-斯托克斯方程,该方程具有退化的、与密度相关的粘性系数。我们考虑了三维周期域,并证明弱鞅解的族是连续紧凑的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信