{"title":"Nano-engineered solutions for extensively drug-resistant tuberculosis (XDR-TB): A novel nanomedicine","authors":"Dilpreet Singh , Vrinda Krishna , Nitya Kumari , Anoushka Banerjee , Prithviraj Kapoor","doi":"10.1016/j.nanoso.2024.101390","DOIUrl":null,"url":null,"abstract":"<div><div>Nano-engineered solutions are revolutionizing the fight against Extensively Drug-Resistant Tuberculosis (XDR-TB), a major public health challenge resistant to conventional TB drugs. Utilizing the unique properties of nanoparticles, this new nanomedicine paradigm enhances drug delivery, combats bacterial resistance and reduces side effects, offering a promising advance in TB therapy. Nanoparticles can penetrate mycobacterial cells more effectively than traditional drugs due to their size, enabling precise drug delivery directly to infected cells. This targeted delivery increases drug efficacy and limits exposure to non-infected cells, reducing potential side effects. Additionally, nanoparticles can be modified with ligands that specifically bind to mycobacterial cells, ensuring precise drug delivery. Nano-engineering also allows for the co-delivery of multiple drugs within a single nanoparticle, crucial for the multi-drug regimen needed for XDR-TB. Encapsulating drugs within nanoparticles allows for controlled release at the infection site, maintaining effective drug levels over time and improving treatment efficacy. Furthermore, incorporating diagnostic agents into these nanoparticles supports a theranostic approach, allowing real-time monitoring of treatment and disease progression. This integrated strategy ensures timely treatment adjustments and personalizes therapy, making nano-engineered solutions a novel and effective approach to tackle XDR-TB.</div></div>","PeriodicalId":397,"journal":{"name":"Nano-Structures & Nano-Objects","volume":"40 ","pages":"Article 101390"},"PeriodicalIF":5.4500,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Structures & Nano-Objects","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352507X24003020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
Nano-engineered solutions are revolutionizing the fight against Extensively Drug-Resistant Tuberculosis (XDR-TB), a major public health challenge resistant to conventional TB drugs. Utilizing the unique properties of nanoparticles, this new nanomedicine paradigm enhances drug delivery, combats bacterial resistance and reduces side effects, offering a promising advance in TB therapy. Nanoparticles can penetrate mycobacterial cells more effectively than traditional drugs due to their size, enabling precise drug delivery directly to infected cells. This targeted delivery increases drug efficacy and limits exposure to non-infected cells, reducing potential side effects. Additionally, nanoparticles can be modified with ligands that specifically bind to mycobacterial cells, ensuring precise drug delivery. Nano-engineering also allows for the co-delivery of multiple drugs within a single nanoparticle, crucial for the multi-drug regimen needed for XDR-TB. Encapsulating drugs within nanoparticles allows for controlled release at the infection site, maintaining effective drug levels over time and improving treatment efficacy. Furthermore, incorporating diagnostic agents into these nanoparticles supports a theranostic approach, allowing real-time monitoring of treatment and disease progression. This integrated strategy ensures timely treatment adjustments and personalizes therapy, making nano-engineered solutions a novel and effective approach to tackle XDR-TB.
期刊介绍:
Nano-Structures & Nano-Objects is a new journal devoted to all aspects of the synthesis and the properties of this new flourishing domain. The journal is devoted to novel architectures at the nano-level with an emphasis on new synthesis and characterization methods. The journal is focused on the objects rather than on their applications. However, the research for new applications of original nano-structures & nano-objects in various fields such as nano-electronics, energy conversion, catalysis, drug delivery and nano-medicine is also welcome. The scope of Nano-Structures & Nano-Objects involves: -Metal and alloy nanoparticles with complex nanostructures such as shape control, core-shell and dumbells -Oxide nanoparticles and nanostructures, with complex oxide/metal, oxide/surface and oxide /organic interfaces -Inorganic semi-conducting nanoparticles (quantum dots) with an emphasis on new phases, structures, shapes and complexity -Nanostructures involving molecular inorganic species such as nanoparticles of coordination compounds, molecular magnets, spin transition nanoparticles etc. or organic nano-objects, in particular for molecular electronics -Nanostructured materials such as nano-MOFs and nano-zeolites -Hetero-junctions between molecules and nano-objects, between different nano-objects & nanostructures or between nano-objects & nanostructures and surfaces -Methods of characterization specific of the nano size or adapted for the nano size such as X-ray and neutron scattering, light scattering, NMR, Raman, Plasmonics, near field microscopies, various TEM and SEM techniques, magnetic studies, etc .