{"title":"A privacy-preserving federated learning approach for airline upgrade optimization","authors":"Sien Chen , Yinghua Huang","doi":"10.1016/j.jairtraman.2024.102693","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><div>A key issue of making upgrade decisions is to match the most relevant upgrade offers to the right customers at the right time. To optimize upgrade strategies and profitability, companies seek to break “data silos” between themselves and other business partners for a more holistic view of customers' consumption experiences. However, multi-source data fusion may lead to potential privacy leakage. To overcome these two challenges in data silos and privacy protection, this study introduced a privacy-preserving federated learning (FL) approach and explained the process of using FL in modeling airline passengers’ willingness to pay for upgrade offers.</div></div><div><h3>Design/methodology/approach</h3><div>Federated learning is a new confidential computing technique that allows companies to train a model cooperatively by exchanging model parameters instead of the actual raw data, which might include customers' privacy sensitive information. Using a case study of a Chinese airline company, this study demonstrated how FL-based upgrade models using multi-source data can be developed to improve the accuracy of predicting customers' willingness to pay for upgrades while preserving customers’ personal data privacy.</div></div><div><h3>Findings</h3><div>Comparing with traditional unilateral model using single-source data, the federated logistic regression and SecureBoost models demonstrate better model performance. This indicates that the proposed FL approach can enhance the accuracy of modeling airline passengers' willingness to pay for upgrade offers while preserving passengers’ data privacy. The findings also show that the FL-based models generally took longer running time than the traditional unilateral model due to the design of FL approach in ensuring data privacy.</div></div><div><h3>Originality</h3><div>This study contributes to the literature of upgrade optimization by introducing the new FL approach for developing machining learning models to predict customers’ reaction to upgrade offers. Although we focus on the airline industry in our case study, the proposed FL approach can be applied to other industries with a similar issue of upgrade optimization such as hotels or cruise lines, and car rental.</div></div>","PeriodicalId":14925,"journal":{"name":"Journal of Air Transport Management","volume":"122 ","pages":"Article 102693"},"PeriodicalIF":3.9000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Air Transport Management","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0969699724001583","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
A key issue of making upgrade decisions is to match the most relevant upgrade offers to the right customers at the right time. To optimize upgrade strategies and profitability, companies seek to break “data silos” between themselves and other business partners for a more holistic view of customers' consumption experiences. However, multi-source data fusion may lead to potential privacy leakage. To overcome these two challenges in data silos and privacy protection, this study introduced a privacy-preserving federated learning (FL) approach and explained the process of using FL in modeling airline passengers’ willingness to pay for upgrade offers.
Design/methodology/approach
Federated learning is a new confidential computing technique that allows companies to train a model cooperatively by exchanging model parameters instead of the actual raw data, which might include customers' privacy sensitive information. Using a case study of a Chinese airline company, this study demonstrated how FL-based upgrade models using multi-source data can be developed to improve the accuracy of predicting customers' willingness to pay for upgrades while preserving customers’ personal data privacy.
Findings
Comparing with traditional unilateral model using single-source data, the federated logistic regression and SecureBoost models demonstrate better model performance. This indicates that the proposed FL approach can enhance the accuracy of modeling airline passengers' willingness to pay for upgrade offers while preserving passengers’ data privacy. The findings also show that the FL-based models generally took longer running time than the traditional unilateral model due to the design of FL approach in ensuring data privacy.
Originality
This study contributes to the literature of upgrade optimization by introducing the new FL approach for developing machining learning models to predict customers’ reaction to upgrade offers. Although we focus on the airline industry in our case study, the proposed FL approach can be applied to other industries with a similar issue of upgrade optimization such as hotels or cruise lines, and car rental.
期刊介绍:
The Journal of Air Transport Management (JATM) sets out to address, through high quality research articles and authoritative commentary, the major economic, management and policy issues facing the air transport industry today. It offers practitioners and academics an international and dynamic forum for analysis and discussion of these issues, linking research and practice and stimulating interaction between the two. The refereed papers in the journal cover all the major sectors of the industry (airlines, airports, air traffic management) as well as related areas such as tourism management and logistics. Papers are blind reviewed, normally by two referees, chosen for their specialist knowledge. The journal provides independent, original and rigorous analysis in the areas of: • Policy, regulation and law • Strategy • Operations • Marketing • Economics and finance • Sustainability