Maciej M. Telesiński , Wei Liu , Xianglin Ren , Marek Zajączkowski
{"title":"Worldwide consequences of a mid-Holocene cold event in the Nordic Seas","authors":"Maciej M. Telesiński , Wei Liu , Xianglin Ren , Marek Zajączkowski","doi":"10.1016/j.quascirev.2024.109002","DOIUrl":null,"url":null,"abstract":"<div><div>The present interglacial is a relatively warm and stable period, especially compared to the preceding glacial time. However, the Holocene has seen the emergence of several remarkable cold events, some with worldwide consequences. Leveraging marine records from the Nordic Seas, we provide the first detailed account of a cold event centered around 6.8 ka BP. Utilizing paleoceanographic proxies and advanced modeling, we unveil a distinct subsurface water cooling, associated with a stepwise increase in sea-ice cover in the eastern Fram Strait. Our findings emphasize the role of Greenland Sea deep convection onset and the subsequent westward shift in Atlantic Water flow, enabling sea-ice advection from the Barents Sea. The heightened sea-ice cover weakened Atlantic Water advection, perturbing thermohaline circulation in the eastern Nordic Seas. These perturbations propagated worldwide, affecting North Atlantic deep-water circulation, inducing widespread hemispheric cooling, shifting the Intertropical Convergence Zone southward, and weakening the East Asian monsoon. Incorporating results from the Transient simulations of Climate Evolution of the last 21,000 years (TraCE-21ka) supports and augments proxy-based paleoreconstructions, underscoring sea-ice dynamics and ocean circulation's critical influence. This study highlights the potential for localized cold events within ostensibly warm climatic intervals. It underscores the need to comprehend their mechanisms for precise climate predictions and informed policymaking toward a sustainable future.</div></div>","PeriodicalId":20926,"journal":{"name":"Quaternary Science Reviews","volume":"344 ","pages":"Article 109002"},"PeriodicalIF":3.2000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quaternary Science Reviews","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0277379124005031","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The present interglacial is a relatively warm and stable period, especially compared to the preceding glacial time. However, the Holocene has seen the emergence of several remarkable cold events, some with worldwide consequences. Leveraging marine records from the Nordic Seas, we provide the first detailed account of a cold event centered around 6.8 ka BP. Utilizing paleoceanographic proxies and advanced modeling, we unveil a distinct subsurface water cooling, associated with a stepwise increase in sea-ice cover in the eastern Fram Strait. Our findings emphasize the role of Greenland Sea deep convection onset and the subsequent westward shift in Atlantic Water flow, enabling sea-ice advection from the Barents Sea. The heightened sea-ice cover weakened Atlantic Water advection, perturbing thermohaline circulation in the eastern Nordic Seas. These perturbations propagated worldwide, affecting North Atlantic deep-water circulation, inducing widespread hemispheric cooling, shifting the Intertropical Convergence Zone southward, and weakening the East Asian monsoon. Incorporating results from the Transient simulations of Climate Evolution of the last 21,000 years (TraCE-21ka) supports and augments proxy-based paleoreconstructions, underscoring sea-ice dynamics and ocean circulation's critical influence. This study highlights the potential for localized cold events within ostensibly warm climatic intervals. It underscores the need to comprehend their mechanisms for precise climate predictions and informed policymaking toward a sustainable future.
期刊介绍:
Quaternary Science Reviews caters for all aspects of Quaternary science, and includes, for example, geology, geomorphology, geography, archaeology, soil science, palaeobotany, palaeontology, palaeoclimatology and the full range of applicable dating methods. The dividing line between what constitutes the review paper and one which contains new original data is not easy to establish, so QSR also publishes papers with new data especially if these perform a review function. All the Quaternary sciences are changing rapidly and subject to re-evaluation as the pace of discovery quickens; thus the diverse but comprehensive role of Quaternary Science Reviews keeps readers abreast of the wider issues relating to new developments in the field.