{"title":"Feature selection strategy optimization for lithium-ion battery state of health estimation under impedance uncertainties","authors":"","doi":"10.1016/j.jechem.2024.09.032","DOIUrl":null,"url":null,"abstract":"<div><div>Battery health evaluation and management are vital for the long-term reliability and optimal performance of lithium-ion batteries in electric vehicles. Electrochemical impedance spectroscopy (EIS) offers valuable insights into battery degradation analysis and modeling. However, previous studies have not adequately addressed the impedance uncertainties, particularly during battery operating conditions, which can substantially impact the robustness and accuracy of state of health (SOH) estimation. Motivated by this, this paper proposes a comprehensive feature optimization scheme that integrates impedance validity assessment with correlation analysis. By utilizing metrics such as impedance residuals and correlation coefficients, the proposed method effectively filters out invalid and insignificant impedance data, thereby enhancing the reliability of the input features. Subsequently, the extreme gradient boosting (XGBoost) modeling framework is constructed for estimating the battery degradation trajectories. The XGBoost model incorporates a diverse range of hyperparameters, optimized by a genetic algorithm to improve its adaptability and generalization performance. Experimental validation confirms the effectiveness of the proposed feature optimization scheme, demonstrating the superior estimation performance of the proposed method in comparison with four baseline techniques.</div></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":null,"pages":null},"PeriodicalIF":13.1000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095495624006569","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0
Abstract
Battery health evaluation and management are vital for the long-term reliability and optimal performance of lithium-ion batteries in electric vehicles. Electrochemical impedance spectroscopy (EIS) offers valuable insights into battery degradation analysis and modeling. However, previous studies have not adequately addressed the impedance uncertainties, particularly during battery operating conditions, which can substantially impact the robustness and accuracy of state of health (SOH) estimation. Motivated by this, this paper proposes a comprehensive feature optimization scheme that integrates impedance validity assessment with correlation analysis. By utilizing metrics such as impedance residuals and correlation coefficients, the proposed method effectively filters out invalid and insignificant impedance data, thereby enhancing the reliability of the input features. Subsequently, the extreme gradient boosting (XGBoost) modeling framework is constructed for estimating the battery degradation trajectories. The XGBoost model incorporates a diverse range of hyperparameters, optimized by a genetic algorithm to improve its adaptability and generalization performance. Experimental validation confirms the effectiveness of the proposed feature optimization scheme, demonstrating the superior estimation performance of the proposed method in comparison with four baseline techniques.
期刊介绍:
The Journal of Energy Chemistry, the official publication of Science Press and the Dalian Institute of Chemical Physics, Chinese Academy of Sciences, serves as a platform for reporting creative research and innovative applications in energy chemistry. It mainly reports on creative researches and innovative applications of chemical conversions of fossil energy, carbon dioxide, electrochemical energy and hydrogen energy, as well as the conversions of biomass and solar energy related with chemical issues to promote academic exchanges in the field of energy chemistry and to accelerate the exploration, research and development of energy science and technologies.
This journal focuses on original research papers covering various topics within energy chemistry worldwide, including:
Optimized utilization of fossil energy
Hydrogen energy
Conversion and storage of electrochemical energy
Capture, storage, and chemical conversion of carbon dioxide
Materials and nanotechnologies for energy conversion and storage
Chemistry in biomass conversion
Chemistry in the utilization of solar energy