{"title":"Cu gradient design to attain high efficient solution-processed CuIn(S,Se)2 solar cells","authors":"","doi":"10.1016/j.jechem.2024.09.040","DOIUrl":null,"url":null,"abstract":"<div><div>Solution-processed chalcopyrite solar cells are widely regarded as a promising alternative method in reducing the cost compared with vacuum-based techniques. It is noted that the absorber layer usually needs to be prepared under a high insert pressure (∼1.6 atm) to suppress element loss or under a mild pressure but additional surface etching is needed for fabricating high efficient solar cell. Herein, a copper gradient structured precursor is proposed to prepare CuIn(S,Se)<sub>2</sub> (CISSe) film under a mild pressure (1.1 atm). The designed gradient Cu not only promotes crystal grain growth and tailors the defects, but also avoids the surface etching of the formed CISSe film for the fabrication of high efficient solar cells. Further, Cu gradient design decreases the conduction band offset of heterojunction, boosting the carriers transport across the p-n heterojunction. Accordingly, a 13.35% efficient CISSe solar cell, comparable to the high efficient CISSe solar cell prepared by this method under high pressure or with film surface etching, is fabricated. This work provides a facile pathway to fabricate high efficient solution-processed chalcopyrite solar cell, avoiding high selenization pressure and film etching, and shows huge potential for solution-processed copper-based solar cells.</div></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":null,"pages":null},"PeriodicalIF":13.1000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095495624006648","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0
Abstract
Solution-processed chalcopyrite solar cells are widely regarded as a promising alternative method in reducing the cost compared with vacuum-based techniques. It is noted that the absorber layer usually needs to be prepared under a high insert pressure (∼1.6 atm) to suppress element loss or under a mild pressure but additional surface etching is needed for fabricating high efficient solar cell. Herein, a copper gradient structured precursor is proposed to prepare CuIn(S,Se)2 (CISSe) film under a mild pressure (1.1 atm). The designed gradient Cu not only promotes crystal grain growth and tailors the defects, but also avoids the surface etching of the formed CISSe film for the fabrication of high efficient solar cells. Further, Cu gradient design decreases the conduction band offset of heterojunction, boosting the carriers transport across the p-n heterojunction. Accordingly, a 13.35% efficient CISSe solar cell, comparable to the high efficient CISSe solar cell prepared by this method under high pressure or with film surface etching, is fabricated. This work provides a facile pathway to fabricate high efficient solution-processed chalcopyrite solar cell, avoiding high selenization pressure and film etching, and shows huge potential for solution-processed copper-based solar cells.
期刊介绍:
The Journal of Energy Chemistry, the official publication of Science Press and the Dalian Institute of Chemical Physics, Chinese Academy of Sciences, serves as a platform for reporting creative research and innovative applications in energy chemistry. It mainly reports on creative researches and innovative applications of chemical conversions of fossil energy, carbon dioxide, electrochemical energy and hydrogen energy, as well as the conversions of biomass and solar energy related with chemical issues to promote academic exchanges in the field of energy chemistry and to accelerate the exploration, research and development of energy science and technologies.
This journal focuses on original research papers covering various topics within energy chemistry worldwide, including:
Optimized utilization of fossil energy
Hydrogen energy
Conversion and storage of electrochemical energy
Capture, storage, and chemical conversion of carbon dioxide
Materials and nanotechnologies for energy conversion and storage
Chemistry in biomass conversion
Chemistry in the utilization of solar energy