Tianwen Yang , Haijuan Pei , Haijian Lv , Shijie Lu , Qi Liu , Daobin Mu
{"title":"Interface compatibility between sulfide solid electrolytes and Ni-rich oxide cathode materials: factors, modification, perspectives","authors":"Tianwen Yang , Haijuan Pei , Haijian Lv , Shijie Lu , Qi Liu , Daobin Mu","doi":"10.1016/j.jechem.2024.09.039","DOIUrl":null,"url":null,"abstract":"<div><div>All-solid-state batteries (ASSBs) assembled with sulfide solid electrolytes (SSEs) and nickel (Ni)-rich oxide cathode materials are expected to achieve high energy density and safety, representing potential candidates for the next-generation energy storage systems. However, interfacial issues between SSEs and Ni-rich oxide cathode materials, attributed to space charge layer, interfacial side reactions, and mechanical contact failure, significantly restrict the performances of ASSBs. The interface degradation is closely related to the components of the composite cathode and the process of electrode fabrication. Focusing on the influencing factors of interface compatibility between SSEs and Ni-rich oxide cathode, this article systematically discusses how cathode active materials (CAMs), electrolytes, conductive additives, binders, and electrode fabrication impact the interface compatibility. In addition, the strategies for the compatibility modification are reviewed. Furthermore, the challenges and prospects of intensive research on the degradation and modification of the SSE/Ni-rich cathode material interface are discussed. This review is intended to inspire the development of high-energy-density and high-safety all-solid-state batteries.</div></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":"101 ","pages":"Pages 233-262"},"PeriodicalIF":13.1000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095495624006636","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0
Abstract
All-solid-state batteries (ASSBs) assembled with sulfide solid electrolytes (SSEs) and nickel (Ni)-rich oxide cathode materials are expected to achieve high energy density and safety, representing potential candidates for the next-generation energy storage systems. However, interfacial issues between SSEs and Ni-rich oxide cathode materials, attributed to space charge layer, interfacial side reactions, and mechanical contact failure, significantly restrict the performances of ASSBs. The interface degradation is closely related to the components of the composite cathode and the process of electrode fabrication. Focusing on the influencing factors of interface compatibility between SSEs and Ni-rich oxide cathode, this article systematically discusses how cathode active materials (CAMs), electrolytes, conductive additives, binders, and electrode fabrication impact the interface compatibility. In addition, the strategies for the compatibility modification are reviewed. Furthermore, the challenges and prospects of intensive research on the degradation and modification of the SSE/Ni-rich cathode material interface are discussed. This review is intended to inspire the development of high-energy-density and high-safety all-solid-state batteries.
期刊介绍:
The Journal of Energy Chemistry, the official publication of Science Press and the Dalian Institute of Chemical Physics, Chinese Academy of Sciences, serves as a platform for reporting creative research and innovative applications in energy chemistry. It mainly reports on creative researches and innovative applications of chemical conversions of fossil energy, carbon dioxide, electrochemical energy and hydrogen energy, as well as the conversions of biomass and solar energy related with chemical issues to promote academic exchanges in the field of energy chemistry and to accelerate the exploration, research and development of energy science and technologies.
This journal focuses on original research papers covering various topics within energy chemistry worldwide, including:
Optimized utilization of fossil energy
Hydrogen energy
Conversion and storage of electrochemical energy
Capture, storage, and chemical conversion of carbon dioxide
Materials and nanotechnologies for energy conversion and storage
Chemistry in biomass conversion
Chemistry in the utilization of solar energy