Qingxu Zhao, Mianshui Rong, Jixin Wang, Xiaojun Li
{"title":"An end-to-end multi-task network for early prediction of the instrumental intensity and magnitude in the north–south seismic belt of China","authors":"Qingxu Zhao, Mianshui Rong, Jixin Wang, Xiaojun Li","doi":"10.1016/j.jseaes.2024.106369","DOIUrl":null,"url":null,"abstract":"<div><div>The seismic activity in the north–south seismic belt of China is among the highest in the world. Predicting instrumental intensity and magnitude after an earthquake mitigates regional seismic disasters. The standard workflow for prediction involves building empirical formulas using characteristic parameters of the initial arrival seismic wave, but this method has limitations in accuracy. Recent data-driven models have shown promise in predicting instrument intensity and magnitude. Still, this is currently done mainly on a single-task basis and does not consider whether a multi-task model can utilize complementary information from different tasks to improve overall performance. This study proposes a data-driven multi-task model called SeismNet, which can simultaneously predict instrument intensity and magnitude. We tested the effectiveness of SeismNet using ground motion records of the north–south seismic belt of China. The model can predict instrument intensity and magnitude more rapidly and accurately than the baseline and single-task models, with increasing accuracy as the input seismic wave duration increases. We also tested the method on three destructive earthquake events (Ms > 6.5) that occurred in China and found that at 3 s after the P-wave arrival, the prediction is almost consistent with the observation. Overall, this study offers a new method for improving earthquake prediction accuracy in the North-South seismic belt of China.</div></div>","PeriodicalId":50253,"journal":{"name":"Journal of Asian Earth Sciences","volume":"276 ","pages":"Article 106369"},"PeriodicalIF":2.7000,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Asian Earth Sciences","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S136791202400364X","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The seismic activity in the north–south seismic belt of China is among the highest in the world. Predicting instrumental intensity and magnitude after an earthquake mitigates regional seismic disasters. The standard workflow for prediction involves building empirical formulas using characteristic parameters of the initial arrival seismic wave, but this method has limitations in accuracy. Recent data-driven models have shown promise in predicting instrument intensity and magnitude. Still, this is currently done mainly on a single-task basis and does not consider whether a multi-task model can utilize complementary information from different tasks to improve overall performance. This study proposes a data-driven multi-task model called SeismNet, which can simultaneously predict instrument intensity and magnitude. We tested the effectiveness of SeismNet using ground motion records of the north–south seismic belt of China. The model can predict instrument intensity and magnitude more rapidly and accurately than the baseline and single-task models, with increasing accuracy as the input seismic wave duration increases. We also tested the method on three destructive earthquake events (Ms > 6.5) that occurred in China and found that at 3 s after the P-wave arrival, the prediction is almost consistent with the observation. Overall, this study offers a new method for improving earthquake prediction accuracy in the North-South seismic belt of China.
期刊介绍:
Journal of Asian Earth Sciences has an open access mirror journal Journal of Asian Earth Sciences: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
The Journal of Asian Earth Sciences is an international interdisciplinary journal devoted to all aspects of research related to the solid Earth Sciences of Asia. The Journal publishes high quality, peer-reviewed scientific papers on the regional geology, tectonics, geochemistry and geophysics of Asia. It will be devoted primarily to research papers but short communications relating to new developments of broad interest, reviews and book reviews will also be included. Papers must have international appeal and should present work of more than local significance.
The scope includes deep processes of the Asian continent and its adjacent oceans; seismology and earthquakes; orogeny, magmatism, metamorphism and volcanism; growth, deformation and destruction of the Asian crust; crust-mantle interaction; evolution of life (early life, biostratigraphy, biogeography and mass-extinction); fluids, fluxes and reservoirs of mineral and energy resources; surface processes (weathering, erosion, transport and deposition of sediments) and resulting geomorphology; and the response of the Earth to global climate change as viewed within the Asian continent and surrounding oceans.