In search of a higher Bochner theorem

IF 0.9 3区 数学 Q2 MATHEMATICS
Emil Horozov , Boris Shapiro , Miloš Tater
{"title":"In search of a higher Bochner theorem","authors":"Emil Horozov ,&nbsp;Boris Shapiro ,&nbsp;Miloš Tater","doi":"10.1016/j.jat.2024.106114","DOIUrl":null,"url":null,"abstract":"<div><div>We initiate the study of a natural generalisation of the classical Bochner–Krall problem asking which linear ordinary differential operators possess sequences of eigenpolynomials satisfying linear recurrence relations of finite length; the classical case corresponds to the 3-term recurrence relations with real coefficients subject to some extra restrictions. We formulate a general conjecture and prove it in the first non-trivial case of operators of order 3.</div></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Approximation Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021904524001023","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We initiate the study of a natural generalisation of the classical Bochner–Krall problem asking which linear ordinary differential operators possess sequences of eigenpolynomials satisfying linear recurrence relations of finite length; the classical case corresponds to the 3-term recurrence relations with real coefficients subject to some extra restrictions. We formulate a general conjecture and prove it in the first non-trivial case of operators of order 3.
寻找更高的波赫纳定理
我们开始研究经典 Bochner-Krall 问题的自然广义化,即线性常微分算子具有满足有限长度线性递推关系的特征多项式序列;经典情况对应于受一些额外限制的实系数 3 期递推关系。我们提出了一个一般性猜想,并在第一个阶数为 3 的算子的非难情形中证明了这一猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
11.10%
发文量
55
审稿时长
6-12 weeks
期刊介绍: The Journal of Approximation Theory is devoted to advances in pure and applied approximation theory and related areas. These areas include, among others: • Classical approximation • Abstract approximation • Constructive approximation • Degree of approximation • Fourier expansions • Interpolation of operators • General orthogonal systems • Interpolation and quadratures • Multivariate approximation • Orthogonal polynomials • Padé approximation • Rational approximation • Spline functions of one and several variables • Approximation by radial basis functions in Euclidean spaces, on spheres, and on more general manifolds • Special functions with strong connections to classical harmonic analysis, orthogonal polynomial, and approximation theory (as opposed to combinatorics, number theory, representation theory, generating functions, formal theory, and so forth) • Approximation theoretic aspects of real or complex function theory, function theory, difference or differential equations, function spaces, or harmonic analysis • Wavelet Theory and its applications in signal and image processing, and in differential equations with special emphasis on connections between wavelet theory and elements of approximation theory (such as approximation orders, Besov and Sobolev spaces, and so forth) • Gabor (Weyl-Heisenberg) expansions and sampling theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信