Realization of Lie superalgebras G(3) and F(4) as symmetries of supergeometries

Pub Date : 2024-10-10 DOI:10.1016/j.jalgebra.2024.08.035
Boris Kruglikov, Andreu Llabrés
{"title":"Realization of Lie superalgebras G(3) and F(4) as symmetries of supergeometries","authors":"Boris Kruglikov,&nbsp;Andreu Llabrés","doi":"10.1016/j.jalgebra.2024.08.035","DOIUrl":null,"url":null,"abstract":"<div><div>For every parabolic subgroup <em>P</em> of a Lie supergroup <em>G</em> the homogeneous superspace <span><math><mi>G</mi><mo>/</mo><mi>P</mi></math></span> carries a <em>G</em>-invariant supergeometry. We address the problem whether <span><math><mi>g</mi><mo>=</mo><mrow><mi>Lie</mi></mrow><mo>(</mo><mi>G</mi><mo>)</mo></math></span> is the maximal (local and global) symmetry of this supergeometry in the case of exceptional Lie superalgebras <span><math><mi>G</mi><mo>(</mo><mn>3</mn><mo>)</mo></math></span> and <span><math><mi>F</mi><mo>(</mo><mn>4</mn><mo>)</mo></math></span>. Our approach is to consider the negatively graded Lie superalgebras for every choice of parabolic, and to compute the Tanaka-Weisfeiler prolongations, with reduction of the structure group when required (2 resp 3 special cases), thus realizing <span><math><mi>G</mi><mo>(</mo><mn>3</mn><mo>)</mo></math></span> and <span><math><mi>F</mi><mo>(</mo><mn>4</mn><mo>)</mo></math></span> as symmetries of supergeometries. This gives 19 inequivalent <span><math><mi>G</mi><mo>(</mo><mn>3</mn><mo>)</mo></math></span>-supergeometries and 55 inequivalent <span><math><mi>F</mi><mo>(</mo><mn>4</mn><mo>)</mo></math></span>-supergeometries, in majority of cases (17 resp 52 cases) those being encoded as vector superdistributions. We describe those supergeometries and realize supersymmetry explicitly.</div></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869324005088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For every parabolic subgroup P of a Lie supergroup G the homogeneous superspace G/P carries a G-invariant supergeometry. We address the problem whether g=Lie(G) is the maximal (local and global) symmetry of this supergeometry in the case of exceptional Lie superalgebras G(3) and F(4). Our approach is to consider the negatively graded Lie superalgebras for every choice of parabolic, and to compute the Tanaka-Weisfeiler prolongations, with reduction of the structure group when required (2 resp 3 special cases), thus realizing G(3) and F(4) as symmetries of supergeometries. This gives 19 inequivalent G(3)-supergeometries and 55 inequivalent F(4)-supergeometries, in majority of cases (17 resp 52 cases) those being encoded as vector superdistributions. We describe those supergeometries and realize supersymmetry explicitly.
分享
查看原文
实现作为超几何对称的列超拉 G(3) 和 F(4)
对于 Lie 超群 G 的每一个抛物线子群 P,均相超空间 G/P 都携带一个 G 不变的超几何。我们要解决的问题是,在例外李超群 G(3) 和 F(4) 的情况下,g=Lie(G) 是否是这个超几何的最大(局部和全局)对称性。我们的方法是考虑每种抛物面选择的负梯度Lie超代数,并计算田中-韦斯费勒延长,必要时还原结构群(2 resp 3 特例),从而实现 G(3) 和 F(4) 作为超几何的对称性。这样就得到了 19 个不等价的 G(3) 超几何和 55 个不等价的 F(4) 超几何,其中大多数情况下(17 个和 52 个)这些超几何都是以向量超分布的形式编码的。我们描述了这些超几何,并明确实现了超对称。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信