A new member of Nicholson's morphic folks

Pub Date : 2024-10-16 DOI:10.1016/j.jalgebra.2024.10.009
Truong Cong Quynh , M. Tamer Koşan , Jan Žemlička
{"title":"A new member of Nicholson's morphic folks","authors":"Truong Cong Quynh ,&nbsp;M. Tamer Koşan ,&nbsp;Jan Žemlička","doi":"10.1016/j.jalgebra.2024.10.009","DOIUrl":null,"url":null,"abstract":"<div><div>The main aim of the paper is to describe the structure of modules and corresponding rings satisfying the property (<em>P</em>), which says that <span><math><mi>M</mi><mo>/</mo><mi>im</mi><mo>(</mo><mi>α</mi><mo>)</mo></math></span> is embeddable into <span><math><mi>ker</mi><mo>⁡</mo><mo>(</mo><mi>α</mi><mo>)</mo></math></span> for each endomorphism <em>α</em> and which generalizes the morphic property. In particular, it is proved that the class of rings with the property (<em>P</em>) is closed under taking products and summands and contains unit regular rings. We also explain connections between the virtually internal cancellation property and the property (<em>P</em>) and characterize the structure of particular classes of rings satisfying the property (<em>P</em>).</div></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869324005477","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The main aim of the paper is to describe the structure of modules and corresponding rings satisfying the property (P), which says that M/im(α) is embeddable into ker(α) for each endomorphism α and which generalizes the morphic property. In particular, it is proved that the class of rings with the property (P) is closed under taking products and summands and contains unit regular rings. We also explain connections between the virtually internal cancellation property and the property (P) and characterize the structure of particular classes of rings satisfying the property (P).
分享
查看原文
尼科尔森变形人的新成员
本文的主要目的是描述满足性质 (P) 的模块和相应环的结构。性质 (P) 是指 M/im(α)可嵌入到每个内态化 α 的 ker(α)中,是形态性质的一般化。特别是,我们证明了具有 (P) 性质的环类在取积和求和下是封闭的,并且包含单位正则环。我们还解释了实际上内部取消性质与性质(P)之间的联系,并描述了满足性质(P)的特定类环的结构特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信