Raimundo Bastos , Irene N. Nakaoka , Noraí R. Rocco
{"title":"On the finiteness of the non-abelian tensor product of groups","authors":"Raimundo Bastos , Irene N. Nakaoka , Noraí R. Rocco","doi":"10.1016/j.jalgebra.2024.10.008","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper we provide sufficient conditions for the non-abelian tensor product <span><math><mi>G</mi><mo>⊗</mo><mi>H</mi></math></span> to be polycyclic/polycyclic-by-finite in terms of involved groups and derivative subgroups (cf. <span><span>Theorem 1.1</span></span>); we also give sufficient conditions for the (local) finiteness of the non-abelian tensor product of groups (cf. <span><span>Theorem 1.2</span></span>, <span><span>Theorem 1.5</span></span>). Furthermore, we deduce similar results for some related constructions associated to the non-abelian tensor products, such as the Schur multiplier of a pair of groups <span><math><mi>M</mi><mo>(</mo><mi>G</mi><mo>,</mo><mi>N</mi><mo>)</mo></math></span>, the non-abelian <em>q</em>-tensor product <span><math><mi>M</mi><msup><mrow><mo>⊗</mo></mrow><mrow><mi>q</mi></mrow></msup><mi>N</mi></math></span>, and homotopy pushout (cf. Section <span><span>5</span></span>).</div></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869324005465","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper we provide sufficient conditions for the non-abelian tensor product to be polycyclic/polycyclic-by-finite in terms of involved groups and derivative subgroups (cf. Theorem 1.1); we also give sufficient conditions for the (local) finiteness of the non-abelian tensor product of groups (cf. Theorem 1.2, Theorem 1.5). Furthermore, we deduce similar results for some related constructions associated to the non-abelian tensor products, such as the Schur multiplier of a pair of groups , the non-abelian q-tensor product , and homotopy pushout (cf. Section 5).