On the finiteness of the non-abelian tensor product of groups

Pub Date : 2024-10-16 DOI:10.1016/j.jalgebra.2024.10.008
Raimundo Bastos , Irene N. Nakaoka , Noraí R. Rocco
{"title":"On the finiteness of the non-abelian tensor product of groups","authors":"Raimundo Bastos ,&nbsp;Irene N. Nakaoka ,&nbsp;Noraí R. Rocco","doi":"10.1016/j.jalgebra.2024.10.008","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper we provide sufficient conditions for the non-abelian tensor product <span><math><mi>G</mi><mo>⊗</mo><mi>H</mi></math></span> to be polycyclic/polycyclic-by-finite in terms of involved groups and derivative subgroups (cf. <span><span>Theorem 1.1</span></span>); we also give sufficient conditions for the (local) finiteness of the non-abelian tensor product of groups (cf. <span><span>Theorem 1.2</span></span>, <span><span>Theorem 1.5</span></span>). Furthermore, we deduce similar results for some related constructions associated to the non-abelian tensor products, such as the Schur multiplier of a pair of groups <span><math><mi>M</mi><mo>(</mo><mi>G</mi><mo>,</mo><mi>N</mi><mo>)</mo></math></span>, the non-abelian <em>q</em>-tensor product <span><math><mi>M</mi><msup><mrow><mo>⊗</mo></mrow><mrow><mi>q</mi></mrow></msup><mi>N</mi></math></span>, and homotopy pushout (cf. Section <span><span>5</span></span>).</div></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869324005465","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we provide sufficient conditions for the non-abelian tensor product GH to be polycyclic/polycyclic-by-finite in terms of involved groups and derivative subgroups (cf. Theorem 1.1); we also give sufficient conditions for the (local) finiteness of the non-abelian tensor product of groups (cf. Theorem 1.2, Theorem 1.5). Furthermore, we deduce similar results for some related constructions associated to the non-abelian tensor products, such as the Schur multiplier of a pair of groups M(G,N), the non-abelian q-tensor product MqN, and homotopy pushout (cf. Section 5).
分享
查看原文
论非阿贝尔群张量积的有限性
在本文中,我们提供了非阿贝尔张量积 G⊗H 在涉及群和导数子群方面是多环/多环-无限的充分条件(参见定理 1.1);我们还给出了群的非阿贝尔张量积的(局部)有限性的充分条件(参见定理 1.2,定理 1.5)。此外,我们还为一些与非阿贝尔张量积相关的构造推导出了类似的结果,如一对群 M(G,N) 的舒尔乘数、非阿贝尔 q 张量积 M⊗qN 以及同调推出(参见第 5 节)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信