Identification of pedestrian submerged parts in urban flooding based on images and deep learning

IF 4.8 2区 环境科学与生态学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Jingchao Jiang , Xinle Feng , Jingzhou Huang , Jiaqi Chen , Min Liu , Changxiu Cheng , Junzhi Liu , Anke Xue
{"title":"Identification of pedestrian submerged parts in urban flooding based on images and deep learning","authors":"Jingchao Jiang ,&nbsp;Xinle Feng ,&nbsp;Jingzhou Huang ,&nbsp;Jiaqi Chen ,&nbsp;Min Liu ,&nbsp;Changxiu Cheng ,&nbsp;Junzhi Liu ,&nbsp;Anke Xue","doi":"10.1016/j.envsoft.2024.106252","DOIUrl":null,"url":null,"abstract":"<div><div>During urban flooding, pedestrians are often trapped in floodwater, and some pedestrians even fall or drown. The pedestrian submerged part (i.e., the human body part that water surface reaches) is an important reference indicator for judging dangerous situation of pedestrians. Flood images usually contain the information about pedestrian submerged parts. We proposed an automated method for identifying pedestrian submerged parts from images. This method utilizes relevant deep learning technologies to segment water surfaces, detect the pedestrians in floodwater, and detect the human keypoints of the pedestrians from images, and then identify submerged parts of the pedestrians according to the relationship between the human keypoints and the water surfaces. This method achieves an accuracy of 90.71% in identifying pedestrian submerged parts on an image dataset constructed from Internet images. The result shows that this method could effectively identify pedestrian submerged parts from images with high accuracy.</div></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"183 ","pages":"Article 106252"},"PeriodicalIF":4.8000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modelling & Software","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S136481522400313X","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

During urban flooding, pedestrians are often trapped in floodwater, and some pedestrians even fall or drown. The pedestrian submerged part (i.e., the human body part that water surface reaches) is an important reference indicator for judging dangerous situation of pedestrians. Flood images usually contain the information about pedestrian submerged parts. We proposed an automated method for identifying pedestrian submerged parts from images. This method utilizes relevant deep learning technologies to segment water surfaces, detect the pedestrians in floodwater, and detect the human keypoints of the pedestrians from images, and then identify submerged parts of the pedestrians according to the relationship between the human keypoints and the water surfaces. This method achieves an accuracy of 90.71% in identifying pedestrian submerged parts on an image dataset constructed from Internet images. The result shows that this method could effectively identify pedestrian submerged parts from images with high accuracy.

Abstract Image

基于图像和深度学习识别城市洪水中的行人淹没部分
城市洪水泛滥时,行人往往会被困在洪水中,有些行人甚至会摔倒或溺水。行人的淹没部位(即水面到达的人体部位)是判断行人危险状况的重要参考指标。洪水图像通常包含行人淹没部位的信息。我们提出了一种从图像中自动识别行人淹没部位的方法。该方法利用相关的深度学习技术对水面进行分割,检测洪水中的行人,并从图像中检测行人的人体关键点,然后根据人体关键点与水面的关系识别行人的淹没部位。在由互联网图像构建的图像数据集上,该方法识别行人淹没部分的准确率达到 90.71%。结果表明,该方法能有效、高精度地识别图像中的行人淹没部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Modelling & Software
Environmental Modelling & Software 工程技术-工程:环境
CiteScore
9.30
自引率
8.20%
发文量
241
审稿时长
60 days
期刊介绍: Environmental Modelling & Software publishes contributions, in the form of research articles, reviews and short communications, on recent advances in environmental modelling and/or software. The aim is to improve our capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales, and to communicate those improvements to a wide scientific and professional audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信