Enhancing dynamic mechanical properties of cemented lithium mica tailings backfill with alkaline rice straw fibers: Experimental investigation and microscopic analysis

IF 6.2 2区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Daopei Zhu , Nanhui Huang , Quanmao Xiao , Zhangli Wang
{"title":"Enhancing dynamic mechanical properties of cemented lithium mica tailings backfill with alkaline rice straw fibers: Experimental investigation and microscopic analysis","authors":"Daopei Zhu ,&nbsp;Nanhui Huang ,&nbsp;Quanmao Xiao ,&nbsp;Zhangli Wang","doi":"10.1016/j.dibe.2024.100563","DOIUrl":null,"url":null,"abstract":"<div><div>Cemented lithium mica tailings backfill (CLMTB) faces dynamic loads from mining operations, affecting its stability. This study investigates the use of alkaline rice straw fibers (ARSF) to enhance CLMTB's dynamic properties. Dynamic impact tests were conducted on CLMTB specimens with varying ARSF contents, revealing that dynamic compressive strength (DCS) increased with ARSF up to 0.45% before decreasing. DCS improved with rising strain rates. The research includes analyses of stress-strain behavior, failure patterns, and energy dissipation during impacts, with scanning electron microscopy revealing the microstructural effects of ARSF on CLMTB. The findings suggest that ARSF effectively mitigates the damaging impacts of loads, significantly reducing crack development in CLMTB.</div></div>","PeriodicalId":34137,"journal":{"name":"Developments in the Built Environment","volume":"20 ","pages":"Article 100563"},"PeriodicalIF":6.2000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developments in the Built Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666165924002448","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Cemented lithium mica tailings backfill (CLMTB) faces dynamic loads from mining operations, affecting its stability. This study investigates the use of alkaline rice straw fibers (ARSF) to enhance CLMTB's dynamic properties. Dynamic impact tests were conducted on CLMTB specimens with varying ARSF contents, revealing that dynamic compressive strength (DCS) increased with ARSF up to 0.45% before decreasing. DCS improved with rising strain rates. The research includes analyses of stress-strain behavior, failure patterns, and energy dissipation during impacts, with scanning electron microscopy revealing the microstructural effects of ARSF on CLMTB. The findings suggest that ARSF effectively mitigates the damaging impacts of loads, significantly reducing crack development in CLMTB.
用碱性稻草纤维增强胶结锂云母尾矿回填的动态力学性能:实验研究与显微分析
固结锂云母尾矿回填(CLMTB)面临采矿作业产生的动荷载,影响其稳定性。本研究探讨了使用碱稻草纤维(ARSF)来增强锂云母尾矿回填土的动态特性。对不同 ARSF 含量的 CLMTB 试样进行了动态冲击试验,结果表明,动态抗压强度(DCS)随 ARSF 的增加而增加,最高可达 0.45%,然后逐渐降低。随着应变率的增加,动态抗压强度也有所提高。研究包括分析应力应变行为、失效模式和冲击过程中的能量耗散,扫描电子显微镜揭示了 ARSF 对 CLMTB 的微观结构影响。研究结果表明,ARSF 能有效减轻负载的破坏性影响,显著减少 CLMTB 的裂纹发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.40
自引率
1.20%
发文量
31
审稿时长
22 days
期刊介绍: Developments in the Built Environment (DIBE) is a recently established peer-reviewed gold open access journal, ensuring that all accepted articles are permanently and freely accessible. Focused on civil engineering and the built environment, DIBE publishes original papers and short communications. Encompassing topics such as construction materials and building sustainability, the journal adopts a holistic approach with the aim of benefiting the community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信