Astrid A. Carlsen , Michele Casini , Francesco Masnadi , Olof Olsson , Aron Hejdström , Jonas Hentati-Sundberg
{"title":"Autonomous data sampling for high-resolution spatiotemporal fish biomass estimates","authors":"Astrid A. Carlsen , Michele Casini , Francesco Masnadi , Olof Olsson , Aron Hejdström , Jonas Hentati-Sundberg","doi":"10.1016/j.ecoinf.2024.102852","DOIUrl":null,"url":null,"abstract":"<div><div>Many key ecological dynamics such as biomass distributions are only detectable on a fine spatiotemporal scale. Autonomous data collection with Unmanned Surface Vehicles (USV) creates new possibilities for cost efficient and high-resolution aquatic data sampling. However, the spatial coverage and sampling resolution remain uncertain due to the novelty of the technology. Further, there is no established method for analysing such fine-scale autocorrelated data without aggregation, potentially compromising data resolution. We here used a USV with an echosounder, a conductivity-temperature sensor and a flourometer to collect data from April–July 2019–2023 in a 60x80km area in the central Baltic Sea. The USV covered a total distance of 8000 nmi, over 42–81 days per year, with an average speed of 0.5 m/s. We combined the hydroacoustic data with publicly available oceanographic data from Copernicus Marine Service Information (CMSI) to describe seasonal distribution dynamics of a small pelagic fish community. Key oceanographic variables collected by the USV were correlated with CMSI estimates at daily/monthly resolution, respectively, to test for suitability to scale (Temperature 0.99/0.97; Salinity −0.77/−0.26; Chlorophyll-a 0.12/0.28). We investigated two approaches of Species Distribution Models (SDMs): generalized additive models (GAM) versus spatiotemporal generalized linear mixed effect models (GLMM). The GLMMs explained the observed data better than the GAMs (R<sup>2</sup> 0.31 and 0.20, respectively). The addition of environmental variables increased the explanatory capability of GAM and GLMM by 25 % and ∼ 3 %, respectively. Due to the high data resolution, we found significant amounts of positive autocorrelation (R: 0.05–0.30) across more than 50 sequential observations (>6 hours). However, we found that diel patterns in fish detection strongly affected the abundance estimates due to vertically migrating species hiding in the ‘acoustic dead zone’ near the seabed. Such dynamics could only be estimated and corrected for in predictions on the high-resolution data, complicating the trade-off between autocorrelation and high-resolution for SDMs. We compared estimates and effect sizes/directions in identical SDMs on 2x2km/month aggregated (i.e non-autocorrelated) observations and non-aggregated (i.e. autocorrelated) observations, and found relatively little difference in spatiotemporal estimates (<em>r</em> = 0.80). For the first time, we predicted the distribution of a small pelagic fish community at a high spatial resolution, in an area essential to breeding top predators, opening up for new applications in ecological studies locally and globally.</div></div>","PeriodicalId":51024,"journal":{"name":"Ecological Informatics","volume":"84 ","pages":"Article 102852"},"PeriodicalIF":5.8000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Informatics","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1574954124003947","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Many key ecological dynamics such as biomass distributions are only detectable on a fine spatiotemporal scale. Autonomous data collection with Unmanned Surface Vehicles (USV) creates new possibilities for cost efficient and high-resolution aquatic data sampling. However, the spatial coverage and sampling resolution remain uncertain due to the novelty of the technology. Further, there is no established method for analysing such fine-scale autocorrelated data without aggregation, potentially compromising data resolution. We here used a USV with an echosounder, a conductivity-temperature sensor and a flourometer to collect data from April–July 2019–2023 in a 60x80km area in the central Baltic Sea. The USV covered a total distance of 8000 nmi, over 42–81 days per year, with an average speed of 0.5 m/s. We combined the hydroacoustic data with publicly available oceanographic data from Copernicus Marine Service Information (CMSI) to describe seasonal distribution dynamics of a small pelagic fish community. Key oceanographic variables collected by the USV were correlated with CMSI estimates at daily/monthly resolution, respectively, to test for suitability to scale (Temperature 0.99/0.97; Salinity −0.77/−0.26; Chlorophyll-a 0.12/0.28). We investigated two approaches of Species Distribution Models (SDMs): generalized additive models (GAM) versus spatiotemporal generalized linear mixed effect models (GLMM). The GLMMs explained the observed data better than the GAMs (R2 0.31 and 0.20, respectively). The addition of environmental variables increased the explanatory capability of GAM and GLMM by 25 % and ∼ 3 %, respectively. Due to the high data resolution, we found significant amounts of positive autocorrelation (R: 0.05–0.30) across more than 50 sequential observations (>6 hours). However, we found that diel patterns in fish detection strongly affected the abundance estimates due to vertically migrating species hiding in the ‘acoustic dead zone’ near the seabed. Such dynamics could only be estimated and corrected for in predictions on the high-resolution data, complicating the trade-off between autocorrelation and high-resolution for SDMs. We compared estimates and effect sizes/directions in identical SDMs on 2x2km/month aggregated (i.e non-autocorrelated) observations and non-aggregated (i.e. autocorrelated) observations, and found relatively little difference in spatiotemporal estimates (r = 0.80). For the first time, we predicted the distribution of a small pelagic fish community at a high spatial resolution, in an area essential to breeding top predators, opening up for new applications in ecological studies locally and globally.
期刊介绍:
The journal Ecological Informatics is devoted to the publication of high quality, peer-reviewed articles on all aspects of computational ecology, data science and biogeography. The scope of the journal takes into account the data-intensive nature of ecology, the growing capacity of information technology to access, harness and leverage complex data as well as the critical need for informing sustainable management in view of global environmental and climate change.
The nature of the journal is interdisciplinary at the crossover between ecology and informatics. It focuses on novel concepts and techniques for image- and genome-based monitoring and interpretation, sensor- and multimedia-based data acquisition, internet-based data archiving and sharing, data assimilation, modelling and prediction of ecological data.